Optical trapping method observes bacteria in super resolution without sample prep

Dec. 13, 2016
A method that traps biological cells with a laser beam can help obtain super-resolution microscopy images of DNA in single bacteria.

By using a method that traps biological cells with a laser beam for study under a microscope, a team of researchers at Bielefeld University (Germany) and colleagues is able to obtain super-resolution microscopy images of DNA in single bacteria. The method avoids the need for sample preparations, which can harm these types of cells under observation.

Related: Researchers develop open source software for high-resolution microscopy

Many bacteria and blood cells prefer to be able to swim freely in solution, as they are continuously in rapid flow and do not remain on surfaces. If they adhere to a surface, this changes their structure and they die. Thomas Huser, head of the Biomolecular Photonics Research Group in the Faculty of Physics at Bielefeld University, explains that the research team's method allows them to take these freely moving cells and then use an optical trap to study them at a very high resolution. The cells are held in place by a laser beam to not only immobilize them without a substrate, but can also turn and rotate them for study under a microscope.

Prof. Dr. Thomas Huser and his team have further developed a procedure for super-resolution microscopy of cells. This enables them to hold the cells without using substrates and obtain optical images with a similar resolution to that obtained with electron microscopes. (Photo: Bielefeld University)

The researchers have further developed the procedure for use in super-resolution microscopy by using a second laser beam as an optical trap so that the cells float under the microscope and can be moved at will. "The laser beam is very intensive, but invisible to the naked eye because it uses infrared light," says Robin Diekmann, a member of the Biomolecular Photonics Research Group. "When this laser beam is directed towards a cell, forces develop within the cell that hold it within the focus of the beam."

Using their new method, the physicists have succeeded in holding and rotating bacterial cells in such a way that they can obtain images of the cells from several sides. Thanks to the rotation, the researchers can study the three-dimensional structure of the DNA at a resolution of ~0.0001 mm.

Physicists at Bielefeld University have observed the distribution of the genetic information in an E. coli bacterial cell in super resolution without anchoring the cells on a glass substrate. (Photo: Bielefeld University)

Professor Huser and his team want to further modify the method so that it will enable them to observe the interplay between living cells. They would then be able to study, for example, how germs penetrate cells.

To develop the new methods, the scientists are working together with Mike Heilemann and Christoph Spahn from Johann Wolfgang Goethe University (Frankfurt, Germany).

Full details of the work appear in the journal Nature Communications; for more information, please visit http://dx.doi.org/10.1038/ncomms13711.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!