Low-light CMOS biosensor enables detection of four copies of pathogen DNA per sample

May 22, 2015
Anitoa Systems has demonstrated handheld, real-time qPCR using its ultra-low-light CMOS biosensor.

Anitoa Systems (Palo Alto, CA), in a collaboration with Zhejiang University of China, has demonstrated a handheld, real-time quantitative-polymerase-chain-reaction system (qPCR) using Anitoa's ultra-low-light CMOS biosensor. The company's handheld qPCR can detect several types of pathogen DNA and RNA, including hepatitis B/C and E. coli. It has achieved detection limit of four copies per sample and over nine orders of magnitude in dynamic range.

Related: Infectious disease control with portable CMOS-based diagnostics

A key component of the handheld qPCR system is Anitoa's CMOS biosensor chip. It formed a single-chip fluorescence imaging system, tightly integrated with a miniature thermal cycler, to perform real-time imaging of multiple PCR reaction sites simultaneously without the need for a scanning mechanism commonly used by qPCR systems today.

Released in September 2014, the company's CMOS biosensor has the needed sensitivity to replace photomultiplier tubes (PMTs) and cooled CCDs in a wide range of medical and scientific instruments, such as a qPCR instrument. Its ultra-low-light sensitivity (3e-6 lux) is crucial for achieving good signal-to-noise ratio (SNR) in imaging molecular interactions based on the fluorescence or chemiluminescence signaling principle.

Now, the company is developing a low-cost, portable qPCR-based molecular diagnostics platform as a globally affordable tool to help fight infectious diseases worldwide. By using the company's CMOS biosensor instead of bulkier and more expensive CCD or PMT devices for fluorescence imaging, system designers can now achieve significant space and cost savings by doing away with those auxiliary components found in a PMT- or CCD-based system necessary for signal acquisition, high voltage supply and regulation, and heat ventilation. In addition, multiple CMOS biosensors can be deployed to provide wavelength-multiplexing imaging capability, enabling sensing of multiple reaction sites.

A CMOS-based qPCR reference design that includes a thermal cycler and matching fluorescence imaging subsystem is available from the company for selected OEM customers. Inquiries may be sent to [email protected].

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!