CELL BIOLOGY/SPECTROSCOPY: Microspectroscopy setup enables direct monitoring of singlet oxygen in individual cells

Sept. 16, 2014
Singlet oxygen, the first excited state of molecular oxygen, is a highly reactive species that plays an important role in a wide range of biological processes, including cell signaling, immune response, macromolecule degradation, and elimination of neoplastic tissue during photodynamic therapy.

Singlet oxygen, the first excited state of molecular oxygen, is a highly reactive species that plays an important role in a wide range of biological processes, including cell signaling, immune response, macromolecule degradation, and elimination of neoplastic tissue during photodynamic therapy (PDT). Now, researchers have developed an experimental setup that enables direct microspectroscopic monitoring of singlet oxygen.1

The experimental setup for direct monitoring of singlet oxygen in cells includes a 2D InGaAs camera coupled to an imaging spectrograph. (Image courtesy of Princeton Instruments)

The Charles University (Prague, Czech Republic) scientists used two detection channels—visible and near-infrared (NIR)—to perform real-time imaging of the very weak NIR phosphorescence of singlet oxygen and photosensitizer simultaneously with visible fluorescence of the photosensitizer. Their experimental setup enables acquisition of spectral images based on singlet oxygen and photosensitizer luminescence from individual cells, where one dimension of the image is spatial and the other is spectral, covering a spectral range from 500 to 1700 nm.

To achieve these results, the researchers coupled a 2D-array indium gallium arsenide (InGaAs) camera with NIR sensitivity to an imaging spectrograph. The 2D detection array in the camera dramatically reduced acquisition times and helped to avoid some of the problems caused by photobleaching as compared to the group's previous 1D InGaAs detectors. A back-illuminated, silicon CCD camera was used to detect visible light in the setup.

The researchers indicate that the introduction of spectral images for such studies addresses the issue of a potential spectral overlap of singlet oxygen phosphorescence with NIR-extended luminescence of the photosensitizer and provides a powerful tool for distinguishing and separating them, which can be applied to any photosensitizer manifesting NIR luminescence.

1. M. Scholz, R. Dedic, J. Valenta, T. Breitenbach, and J. Hála, Photochem. Photobiol. Sci., 13, 1203–1212 (2014); doi:10.1039/C4PP00121D.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!