Array tomography reveals synaptic distinctions in imaging brain connections

Jan. 1, 2011
Brain circuitry is incredibly complex. Even the best of traditional light microscopes have been unable to reliably resolve the tiny, tightly packed synapses that link a single neuron by as many as tens of thousands of connections.

Brain circuitry is incredibly complex. Even the best of traditional light microscopes have been unable to reliably resolve the tiny, tightly packed synapses that link a single neuron by as many as tens of thousands of connections. But researchers at the Stanford University School of Medicine, applying an imaging system called array tomography, say they have been able to locate and count myriad such connections in unprecedented detail—quickly and accurately—using brain-tissue samples from mice.1 The work has allowed them to capture and catalog a "surprising variety" of neuronal connections.

Array tomography, invented by professor Stephen Smith and senior scientist Kristina Micheva, combines high-resolution photography with specialized fluorescent molecules that bind to different proteins and relies on massive computing power to convert captured data into imagery. In this study, the researchers carefully sliced tissue from a mouse's cerebral cortex into 70 nm thick sections, which they stained with antibodies designed to match 17 different synapse-associated proteins. The sections were further modified by conjugation to molecules that respond to light by glowing in different colors.

The antibodies were applied in groups of three to the brain sections. After each application, huge numbers of extremely high-resolution photographs were automatically generated to record the locations of different fluorescing colors associated with antibodies to different synaptic proteins. The antibodies were then chemically rinsed away and the procedure was repeated with the next set of three antibodies, and so forth. Each individual synapse thus acquired its own protein-composition "signature," enabling the compilation of a very fine-grained catalog of the brain's varied synaptic types.

The information was recorded and processed by software—designed for the most part by graduate student Brad Busse—which virtually stitched together 2-D images of the slices into a 3-D rendering that the researchers can rotate, penetrate and navigate.

The study was designed to showcase the technique's application to neuroscience; the team discovered distinctions within a class of synapses previously assumed to be identical. They are now using array tomography to tease out more such distinctions, and with support from the National Institutes of Health, they are examining tissue samples from Alzheimer's brains.

Smith and Micheva are founding a company that is gathering investor funding; Stanford's Office of Technology Licensing has obtained one U.S. patent on array tomography and filed for a second.

1. K. Micheva et al., Neuron 68 (4): 639-653 (2010)

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!