CELL BIOLOGY/MICROSCOPY: Highly accurate microscopy method measures growth in all types of cells

Nov. 1, 2011
An extremely sensitive imaging method that uses two light beams to quantitatively measure cell mass with femtogram accuracy has proven able to track the growth of a single cell and even intracellular mass transport.

An extremely sensitive imaging method that uses two light beams to quantitatively measure cell mass with femtogram accuracy has proven able to track the growth of a single cell and even intracellular mass transport. Developed at the University of Illinois (Champaign, IL), the approach—called spatial light interference microscopy (SLIM)—offers a key advantage over other methods: It can measure all types of cells, from bacteria and single cells to populations (including mammalian, adherent, and nonadherent cells)—all the while maintaining sensitivity and quantitative information derived, according to Mustafa Mir, a first author on a paper describing the work.1

Because of SLIM’s sensitivity, the researchers were able to monitor growth through different phases. Doing so enabled them to discover that mammalian cells exhibit exponential growth only during the G2 phase of the cell cycle—that is, following DNA replication and before cell division—which has implications not only for basic biology, but also for diagnostics, drug development, and tissue engineering. The researchers hope to apply their new knowledge to different disease models: For example, they aim to learn how growth varies between healthy and cancerous cells, and the effects of treatments on growth rates.

SLIM combines holography and phase-contrast microscopy, and requires no staining or other special preparation. Based on white light, it can be combined with more traditional microscopy techniques, such as fluorescence. Mir explains that the method works as an add-on to a commercial microscope: “Biologists can use all their old tricks and just add our module on top,” he says.

1. M. Mir et al., PNAS 108, 32, 13124–13129 (2011).

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!