CELL BIOLOGY/MICROSCOPY: Highly accurate microscopy method measures growth in all types of cells

Nov. 1, 2011
An extremely sensitive imaging method that uses two light beams to quantitatively measure cell mass with femtogram accuracy has proven able to track the growth of a single cell and even intracellular mass transport.

An extremely sensitive imaging method that uses two light beams to quantitatively measure cell mass with femtogram accuracy has proven able to track the growth of a single cell and even intracellular mass transport. Developed at the University of Illinois (Champaign, IL), the approach—called spatial light interference microscopy (SLIM)—offers a key advantage over other methods: It can measure all types of cells, from bacteria and single cells to populations (including mammalian, adherent, and nonadherent cells)—all the while maintaining sensitivity and quantitative information derived, according to Mustafa Mir, a first author on a paper describing the work.1

Because of SLIM’s sensitivity, the researchers were able to monitor growth through different phases. Doing so enabled them to discover that mammalian cells exhibit exponential growth only during the G2 phase of the cell cycle—that is, following DNA replication and before cell division—which has implications not only for basic biology, but also for diagnostics, drug development, and tissue engineering. The researchers hope to apply their new knowledge to different disease models: For example, they aim to learn how growth varies between healthy and cancerous cells, and the effects of treatments on growth rates.

SLIM combines holography and phase-contrast microscopy, and requires no staining or other special preparation. Based on white light, it can be combined with more traditional microscopy techniques, such as fluorescence. Mir explains that the method works as an add-on to a commercial microscope: “Biologists can use all their old tricks and just add our module on top,” he says.

1. M. Mir et al., PNAS 108, 32, 13124–13129 (2011).

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!