1.3 µm quantum-dot laser emits at temperatures exceeding 200°C

May 25, 2011
Scientists at QD Laser, Fujitsu Laboratories Limited, and the Institute for Nano Quantum Information Electronics, the University of Tokyo have created what they say is the world's first 1.3-µm-emitting semiconductor laser that operates at temperatures over 200°C.

Kanagawa and Tokyo, Japan--Scientists at QD Laser, Fujitsu Laboratories Limited, and the Institute for Nano Quantum Information Electronics, the University of Tokyo have created what they say is the world's first 1.3-µm-emitting semiconductor laser that operates at temperatures over 200°C (previous semiconductor lasers have been limited to temperatures no higher than 175°C). With quantum dots as the active material, these new lasers could find use in oil and gas exploration, where temperatures often far exceed the boiling point of water.

Working high-temperature quantum-dot lasers require a high density and uniformity of quantum dots. Along with acheving this, the researchers also improved quantum-dot manufacturing technology, reducing the degree of quantum-dot dispersion and enhancing uniformity up to a density of 60 billion dots per cm2 (see figure). Eight layers of these high-density and uniform quantum dots were stacked to create the laser. Under rigorous test conditions, the researchers confirmed that these lasers could emit at temperatures of up to 220°C; more than 2 mW of optical output was obtained at 200°C.

QD Laser (Tokyo, Japan) will commercialize these lasers.

QD Laser is exhibiting the new lasers at Laser World of Photonics in Munich, Germany (Booth # B1-310), held May 23–26, 2011. Details of the technology are being presented at the European Conference on Lasers and Electro-Optics and the Quantum Electronics and Laser Science Conference (CLEO/Europe--EQEC 2011), held from May 22, 2011 in Munich.

A portion of this research was funded by the Special Coordination Funds for Promoting Science and Technology MEXT (Ministry of Education, Culture, Sports, Science and Technology).

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!