Ultrafast laser spectroscopy may open door to more efficient clean industrial fuels

Oct. 31, 2018
Vibrational sum-frequency generation spectroscopy shows ways to efficiently turn CO2 into energy-rich fuels.

Carbon dioxide (CO2) is a hugely abundant waste product that can be converted into energy-rich by-products, such as carbon monoxide. However, this process needs to be made far more efficient for it to work on a global industrial scale. Electrocatalysts have shown promise as a potential way to achieve this required efficiency step-change in CO2 reduction, but the mechanisms by which they operate are often unknown, making it hard for researchers to design new ones in a rational manner.

New research by researchers at the University of Liverpool's Department of Chemistry, in collaboration with Beijing Computational Science Research Center and STFC Rutherford Appleton Laboratory, demonstrates a laser-based technique that can be used to study the electrochemical reduction of CO2 in-situ and provide much-needed insights into these complex chemical pathways.1

The researchers used a technique called vibrational sum-frequency generation (VSFG) spectroscopy, coupled with electrochemical experiments, to explore the chemistry of a particular catalyst called Mn(bpy)(CO)3Br, which is one of the most promising and intensely studied CO2 reduction electrocatalysts. In VSFG spectroscopy, femtosecond infrared pulses and visible picosecond pulses are focused on regions of interest, causing sum-frequency generation (SFG) of light to be generated in the interfaces between the regions; interfacial vibrational modes produce resonant enhancement of the sum-frequency light.

Ultrafast measurement

Using VSFG, the researchers were able to observe key intermediates that are only present at an electrode surface for a very short time—something that has not been achieved in previous experimental studies. At Liverpool, the work was carried out by the Cowan Group, a team of researchers who study and develop new catalytic systems for the sustainable production of fuels.

"A huge challenge in studying electrocatalysts in situ is having to discriminate between the single layer of short-lived intermediate molecules at the electrode surface and the surrounding 'noise' from inactive molecules in the solution," says Gaia Neri, part of the Liverpool team. "We've shown that VSFG makes it possible to follow the behavior of even very short-lived species in the catalytic cycle. This is exciting, as it provides researchers with new opportunities to better understand how electrocatalysts operate, which is an important next step towards commercializing the process of electrochemical CO2 conversation into clean fuel technologies."

Following from this research, the team is now working to further improve the sensitivity of the technique and is developing a new detection system that will allow for a better signal-to-noise ratio. The study was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Source: https://news.liverpool.ac.uk/2018/10/30/laser-technique-may-open-door-to-more-efficient-clean-fuels

REFERENCE:

1. Gaia Neri et al., Nature Catalysis (2018); https://doi.org/10.1038/s41929-018-0169-3.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!