Ultrafast-laser pulses can cause nonlinear resonance 'disaster'

Feb. 11, 2015
Researchers show that conditions can exist where optical harmonic generation becomes noninstantaneous.

In the interests of further understanding the detailed nonlinear optical responses of materials to ultrafast-laser pulses, researchers from a large group of institutionsready, here goes: Weierstrass Institute for Applied Analysis and Stochastics (Berlin, Germany), Tampere University of Technology (Tampere, Finland), Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (Berlin, Germany), KIIT University (Bhubaneswar, India), Leibniz-Universität Hannover (Hannover, Germany), Laser-Laboratorium Göttingen (Göttingen, Germany), and Laser Zentrum Hannover (Hannover, Germany)have now experimentally demonstrated for the first time that conditions can exist where optical harmonic generation becomes noninstantaneous. In particular, even after after the excitation stops, a noninstantaneous polarization decay may occur (depending on the material).

Analyzing third-harmonic generation in titanium dioxide (TiO2) thin films, a lifetime of 8 fs was measuredthat is, noninstantaneous behaviorwhereas no such process occurred in silicon dioxide (SiO2). Nevertheless, this process still qualifies as one of the fastest processes ever resolved with femtosecond spectroscopy.

Needs resonance to occur

Detailed theoretical modeling of these surprising findings indicates that this noninstantaneous response may only occur if there is a resonance of the third harmonic in the optical material. In turn, the generated material response persists in oscillating several cycles after the excitation has already ceased. Concomitantly, third-harmonic radiation is emitted. The process therefore appears like an atomic "resonance disaster" similar to what can occur in mechanical oscillators.

These findings have important consequences for femtosecond measurement techniques and possibly also for ultrashort-pulse generation. Such methods have always relied on the supposed instantaneous nature of harmonic generation and related effects. Similar avoiding resonances in mechanical systems, one therefore also has to carefully avoid optical resonances when measuring extremely short laser pulses.

Source: http://www.mbi-berlin.de/en/current/index.html#2015_02_10

REFERENCE:

1. Michael Hofmann et al., Optica (2015); http://dx.doi.org/10.1364/OPTICA.2.000151

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!