Positronium photons characterize gummy bear nanopores

Jan. 2, 2015
In experiments on gummy bears, researchers at Technische Universität München (TUM; Munich, Germany) have determined relevant gelatin properties using positron-annihilation-lifetime spectroscopy (PALS).
A gummy bear is prepared for positronium annihilation. (Credit: Wenzel Schürmann / TUM)

Gummy bears, as well as other forms of gelatin, are used in the pharmaceutical industry to encapsulate biologically active substances such as medication and vitamins, protecting against oxidation and overly quick release. Nanopores in gelatin have a significant influence on the material's porperties, yet they are difficult to investigate. Now, in experiments on gummy bears, researchers at Technische Universität München (TUM; Munich, Germany) have determined relevant gelatin properties using positron-annihilation-lifetime spectroscopy (PALS).1

In PALS, a beam of positrons is directed at the gummy bear or other subject; if a positron encounters an electron, the two particles briefly form an exotic atom-like object called positronium, then annihilate, producing two photons, each with a 0.511 MeV energy (occasionally, three photons of lower energy are produced instead).

Positronium lasts longer in wet gummy bears
The scientists positron-bombarded red gummy bears at various stages of bear wetness in order to model gelatin capsules dissolving in the stomach. Results of the photon measurements showed that positronium lasts an average of 1.2 ns in dry bears and 1.9 ns in saturated bears.

From these lifetimes, the scientists then deduced the number and size of nanopores in the material. Saturation, which increases a bear's volume by 2.5 times, also leads to formation of voids with an average size of 84.3 Å.

"The larger the free volume [of the nanopores], the easier it is for oxygen to penetrate it and harm the medication, but also the less brittle the gelatin," says Christoph Hugenschmidt, a physicist at TU München.

Source: http://www.tum.de/en/about-tum/news/press-releases/short/article/32047/

REFERENCE:

1. Christoph Hugenschmidt and Hubert Ceeh, Journal of Physical Chemistry B (2014); doi: 10.1021/jp504504p

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!