Simple shearing interferometer measures wavefront of femtosecond laser pulses

Aug. 1, 2018
Using an interferometer to characterize the spatial information of a continuous-wave (CW) laser beam can be done straightforwardly using a shearing interferometer, where the test wavefront is interfered with a positionally shifted duplicate of itself.

Using an interferometer to characterize the spatial information of a continuous-wave (CW) laser beam can be done straightforwardly using a shearing interferometer, where the test wavefront is interfered with a positionally shifted duplicate of itself. However, measuring ultrafast laser pulses using this method is more difficult because, given the short duration of a femtosecond pulse, traditional interferometers lose their functionality. “A simple interferometer like the shear plate, where the beams reflected from the front and back surfaces interfere, no longer works,” says Chunlei Guo, a professor of optics at the University of Rochester (Rochester, NY).

Now, Guo and his associate, Billy Lam, have come up with a simple shearing-interferometer setup that works well with ultrafast pulses of sub-100-fs duration. In fact, the device, called a wedged reversal shearing interferometer (WRSI), can characterize amplitude, phase, polarization, wavelength, and duration of the pulse. The interferometer contains a single beamsplitter cube with one wedged entrance face, producing an almost zero path-length difference between unsheared and sheared beams, and a very stable interference pattern.

The researchers have used the interferometer to characterize a femtosecond laser beam with a pulse duration of 65 fs. Using a 25 mm beamsplitter cube with a refractive index of 1.5 operating in air, the interferometer can handle a beam diameter of about 8 mm (and needs this diameter to form a sufficient number of usable fringes). Phase-shifting allows the field autocorrelation and the spectrum of ultrashort pulses to be measured and, with the insertion of a linear polarizer, allows the polarization distribution of the beam cross-section to be measured point-by-point. Reference: B. Lam and C. Guo, Light Sci. Appl. (2018); https://doi.org/10.1038/s41377-018-0022-0.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!