Slow-light lidar scans independently in two dimensions

Feb. 9, 2012
Researchers from the University of Rochester and the University of Ottawa who had previously demonstrated the one-dimensional (1D) steering of a lidar beam using slow light have now used two independent slow-light mechanisms to steer a lidar beam in two dimensions.
Slow-light lidar uses stimulated Brillouin scattering and dispersive delay to steer independently in x and y
Slow-light lidar uses stimulated Brillouin scattering and dispersive delay to steer independently in x and y

Researchers from the University of Rochester (Rochester, NY) and the University of Ottawa (Ottawa, ON, Canada) who had previously demonstrated the one-dimensional (1D) steering of a lidar beam using slow light have now used two independent slow-light mechanisms to steer a lidar beam in two dimensions. Their previous system had used dispersive delay for 1D steering; to this, they have now added stimulated Brillouin scattering (SBS) for steering in the orthogonal dimension.

The original 1D system had three apertures (channels) in a row; the 2D system has three channels also, but arranged in an L shape. (These later versions can have many more channels.) The SBS generator includes 3.3 km of dispersion-shifted fiber (DSF) with a 10.5 GHz Brillouin frequency shift. An SBS slow-light module consists of 2.2 km of DSF with a counterpropagating pump field. Controlling the power of the pump field tunes the delay. Tests showed precise phase-locking among all three channels; simulated steering in the x and y directions applied by translation stages were independently compensated by the two delay mechanisms. Contact Zhimin Shi at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!