Microresonator optical gyroscope operates via Brillouin laser cascade

April 10, 2017
Researchers have developed a chip-based laser gyroscope that uses counterpropagating Brillouin lasers and measures rotation as a Sagnac-induced frequency shift.
Content Dam Lfw Print Articles 2017 04 1704lfw Nb F4

Laser gyroscopes lie at the heart of many precision commercial and military inertial-navigation systems. Because conventional laser gyroscopes, which are based on either a fiber-optic coil or a free-space ring cavity, are bulky, attempts have been made to produce micro-optical laser gyroscopes. Now, researchers at the California Institute of Technology (Caltech; Pasadena, CA) have developed a chip-based laser gyroscope that uses counterpropagating Brillouin lasers and measures rotation as a Sagnac-induced frequency shift. The first prototype has demonstrated a rotation-rate measurement 40 times greater than that of previous micro-optical laser gyroscopes.

An 18-mm-diameter high-Q disk microresonator made of silica on a silicon chip is excited by a single laser pump wave, which induces a first Stokes wave that, at high-enough power, pumps a second Brillouin Stokes wave that propagates in the opposite direction, inducing another Stokes wave, and so on, resulting in a Brillouin laser cascade. The researchers tested the gyro by applying a sinusoidal rotation with an angular amplitude of 0.14°. A sensitivity of 15 deg/h/(Hz)0.5 and a minimum root-mean-squared rotation rate of 6.3 × 10-3 deg/s (or 22 deg/h) were measured. Narrowing the linewidth of the Brillouin lasers should improve the gyro's sensitivity further. Reference: J. Li et al., Optica (2017); https://doi.org/10.1364/optica.4.000346.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!