Aurea Technology to show self-contained quantum optics instrument building blocks at SPIE Photonics West 2019

Nov. 28, 2018
Quantum-optics modules are made for each other and ease the creation of complex quantum experiments.
SPD_OEM photon-counting module. (Image: Aurea technology) Quantum optics and photonics, usually seen today in the form of complex experiments assembled on an optical table, are touted by some as computing's future. Quantum optics also are relevant to quantum cryptography, tomography, and fundamental physics experiments.Aurea Technology (Besancon, France) is making things easier for those researchers who are assembling complex experiments; Aurea has developed a comprehensive suite of the essential quantum optics instruments for novel quantum optical systems, and will be exhibiting them at booth #959 at SPIE Photonics West 2019 (San Francisco, CA; 2-7 Feb. 2019). The self-contained quantum optics building-blocks offered by Aurea technology include: --The SPD_OEM, a sensitive, low-noise, compact single photon counting module designed for the detection of ultra-low-levels of light down to the single photon regime. This type of device allows sources such as twin-entangled-photon sources to be characterized using time-correlation techniques. --The LYNXEA is an all-in-one time-resolved single photon counting module that integrates two independent single photon counters and the timing electronics. In this device, the two independent photon detectors have been paired during manufacturing; as a result, the two paired detectors have similar dark-count rate and quantum efficiency. --The CHRONOXEA, which is a newly introduced timing-resolved module that provides four channel inputs with timing resolution in the picosecond range. --The TPS, which is a high-brightness twin photon source that emits parallel- or orthogonal-polarization twin photon pairs at telecom wavelengths of 810, 1310, or 1550 nm. Entangled photons are a promising way for demonstrating quantum physics principles and new quantum information applications. For example, entangled photons allow the development of quantum-key distribution (QKD) protocols over distances of a few hundred kilometers. In biological imaging applications, entangled-photon light sources can lead to dispersion-free measurements. For more info, see www.aureatechnology.com. Source: Aurea Technology

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!