Silicon nanocrystals may improve solar cell efficiency with unique quantum effect

July 26, 2007
Researchers at the National Renewable Energy Laboratory have found a new effect in silicon nanocrystals that may improve the efficiency of silicon solar cells.

July 26, 2007, Golden CO--Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL; Golden, CO), collaborating with Innovalight, Inc. (Santa Clara, CA), have shown that a new and important effect called multiple exciton generation (MEG) occurs efficiently in silicon nanocrystals. Multiple exciton generation results in the formation of more than one electron per absorbed photon in the nanocrystals.

Silicon is the dominant semiconductor material used in present day solar cells, representing more than 93% of the photovoltaic cell market. Until this discovery, MEG had been reported over the past two years to occur only in nanocrystals (also called quantum dots) of semiconductor materials that are not presently used in commercial solar cells, and which contained environmentally harmful materials (such as lead). The new result opens the door to the potential application of MEG for greatly enhancing the conversion efficiency of solar cells based on silicon because more of the sun's energy is converted to electricity. This is a key step toward making solar energy more cost-competitive with conventional power sources.

In a paper published on July 24 in the initial on-line version of the American Chemical Society's Nano Letters Journal, an NREL team reported that silicon nanocrystals, or quantum dots, obtained from Innovalight can produce more than one electron from single photons of sunlight that have wavelengths less than 420 nm. When today's photovoltaic solar cells absorb a photon of sunlight, about 50% of the incident energy is lost as heat. MEG provides a way to convert some of this energy lost as heat into additional electricity.

The silicon nanocrystals produced by Innovalight, a thin-film solar-cell developer, were studied at NREL as part of a collaboration between NREL and Innovalight scientists. The NREL team consisted of Matthew C. Beard, Kelly P. Knutsen, Joseph M. Luther, Qing Song, Wyatt Metzger, Randy J. Ellingson, and Arthur J. Nozik.

The findings represent an important extension of the range of semiconductor materials that exhibit MEG and are a further confirmation of pioneering work by Nozik, who in 1997 predicted that semiconductor quantum dots could exhibit efficient electron multiplication and hence increase the efficiency of solar cells.

To date, all experiments showing the production of more than one electron per absorbed photon have been based on various types of optical spectroscopy. In a solar-cell device it is necessary to extract the electrons produced in the quantum dots and pass them through an external circuit to generate electrical power. Such experiments are currently underway at NREL, Innovalight, and other laboratories to demonstrate that MEG can indeed lead to enhanced solar-cell efficiencies. Calculations at NREL by Mark Hanna and Nozik have shown that the maximum theoretical efficiency of quantum dot solar cells exhibiting optimal MEG is about 44% with normal unconcentrated sunlight and 68% with sunlight concentrated by a factor of 500 with special lenses or mirrors. Today's conventional solar cells that produce one electron per photon have maximum efficiencies of 33% and 40%, respectively, under the same solar conditions.

In addition to efficiently extracting the electrons from the quantum dots in solar cells, future research is directed toward producing MEG at wavelengths that have a greater overlap with the solar spectrum, as well as producing a much sharper onset of the MEG processes with decreasing wavelength of the photons.

For further information contact NREL Public Relations at (303) 275-4090.

About the Author

Valerie Coffey-Rosich | Contributing Editor

Valerie Coffey-Rosich is a freelance science and technology writer and editor and a contributing editor for Laser Focus World; she previously served as an Associate Technical Editor (2000-2003) and a Senior Technical Editor (2007-2008) for Laser Focus World.

Valerie holds a BS in physics from the University of Nevada, Reno, and an MA in astronomy from Boston University. She specializes in editing and writing about optics, photonics, astronomy, and physics in academic, reference, and business-to-business publications. In addition to Laser Focus World, her work has appeared online and in print for clients such as the American Institute of Physics, American Heritage Dictionary, BioPhotonics, Encyclopedia Britannica, EuroPhotonics, the Optical Society of America, Photonics Focus, Photonics Spectra, Sky & Telescope, and many others. She is based in Palm Springs, California. 

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!