NIF scientists break one megajoule barrier

Feb. 2, 2010
February 2, 2010--The NNSA announced that scientists at the National Ignition Facility (NIF) at LLNL have successfully delivered an historic level of laser energy--more than 1 megajoule--to a target in a few billionths of a second and demonstrated the target drive conditions required to achieve fusion ignition.

February 2, 2010--The National Nuclear Security Administration (NNSA) announced that scientists at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) have successfully delivered an historic level of laser energy--more than 1 megajoule--to a target in a few billionths of a second and demonstrated the target drive conditions required to achieve fusion ignition.

This is about 30 times the energy ever delivered by any other group of lasers in the world. The peak power of the laser light, which was delivered within a few billionths of a second, was about 500 times that used by the United States at any given time.

“Breaking the megajoule barrier brings us one step closer to fusion ignition at the National Ignition Facility, and shows the universe of opportunities made possible by one of the largest scientific and engineering challenges of our time,” said NNSA administrator Thomas D’Agostino. “NIF is a critical component in our stockpile stewardship program to maintain a safe, secure and effective nuclear deterrent without underground nuclear testing. This milestone is an example of how our nation’s investment in nuclear security is producing benefits in other areas, from advances in energy technology to a better understanding of the universe.”

In order to demonstrate fusion, the energy that powers the sun and the stars, NIF focuses the energy of 192 powerful laser beams into a pencil-eraser-sized cylinder containing a tiny spherical target filled with deuterium and tritium, two isotopes of hydrogen. Inside the cylinder, the laser energy is converted to X-rays, which compress the fuel until it reaches temperatures of more than 200 million degrees Fahrenheit and pressures billions of times greater than Earth’s atmospheric pressure. The rapid compression of the fuel capsule forces the hydrogen nuclei to fuse and release many times more energy than the laser energy that was required to initiate the reaction. A follow-on LIFE project aims to use spent nuclear fuel to generate energy.

This experimental program to achieve fusion ignition is known as the National Ignition Campaign sponsored by NNSA and is a partnership among LLNL, Los Alamos National Laboratory, the Laboratory for Laser Energetics, General Atomics, Sandia National Laboratories, as well as numerous other national laboratories and universities.

The NIF laser system, the only megajoule laser system in the world, began firing all 192-laser beams onto targets in June 2009. In order to characterize the X-ray drive achieved inside the target cylinders as the laser energy is ramped up, these first experiments were conducted at lower laser energies and on smaller targets than will be used for the ignition experiments. These targets used gas-filled capsules that act as substitutes for the fusion fuel capsules that will be used in the 2010 ignition campaign. The 1 MJ shot represents the culmination of these experiments using an ignition-scale target for the first time.

NIF, the world’s largest laser facility, is the first facility expected to achieve fusion ignition and energy gain in a laboratory setting.

--Posted by Gail Overton; [email protected];
www.laserfocusworld.com

Sponsored Recommendations

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!