Raytheon BBN wins DARPA funding for two "Information in a Photon" projects

Dec. 23, 2010
Cambridge, MA--Raytheon BBN Technologies was awarded $2.1 million in funding by DARPA for two projects under the Information in a Photon (InPho) program.

Cambridge, MA--Raytheon BBN Technologies, a wholly owned subsidiary of Raytheon Company (NYSE: RTN), has been awarded $2.1 million in funding by DARPA (the Defense Advanced Research Projects Agency) for two projects under the Information in a Photon, or InPho, program. The goal of the two projects is to develop new theory and experimental techniques that enable free-space optical (FSO) communications and quantum-entangled imaging systems to operate at their ultimate limits of information encoding efficiency as permitted by the laws of quantum physics.

The first project, PIECOMM (Photon Information Efficient Communications), aims to create techniques that increase the current limits of optical communications technology while approaching the ultimate limits of photon information efficiency. Achieving this goal will significantly increase power management, speed and reach on free-space optical (FSO) communication links, including far-field links used in deep space.

"Today, optical communications are far from ultimate performance and reaching the furthest limits of light's information carrying capacity," said Saikat Guha, Raytheon BBN Technologies scientist. "We are developing techniques that greatly improve the performance of current optical communications and approach the quantum limits of light's information carrying capacity."

Raytheon BBN Technologies will generate and demonstrate experimental solutions, such as multiple-spatial-mode design and adaptive joint-detection receivers that attain communications at 10-bits per photon and 5-bits/sec/Hz while simultaneously encoding information in space and time. This work will be done in close collaboration with leading researchers in optical communications, quantum optics and information theory at the Massachusetts Institute of Technology.

The second project, FINESSE (Fundamental Information Capacity of Electromagnetism with Squeezing and Spatial Entanglement), aims to determine the theoretical performance limits for imaging technology as determined by the laws of quantum physics. In collaboration with the University of Virginia, Raytheon BBN Technologies will conduct a theoretical and experimental program of study investigating newly engineered quantum states of light to perform imaging with performance superior to conventional techniques. The program will result in a fundamentally new technology for imaging in the near and the far field.

"Conventional imaging techniques use classical light pulses from lasers and detect the resulting reflection from a target or scene," said Jonathan Habif, Raytheon BBN Technologies senior scientist. "We have set out to define new quantum states of light and subsequent detection methods from which we can obtain far more image information from a lot less light."

Raytheon BBN Technologies will develop new sources of quantum-entangled light and state-of-the-art optical sensor technologies to demonstrate improvement in the information efficiency of light used for imaging.

SOURCE: Raytheon; http://raytheon.mediaroom.com/index.php?s=43&item=1727

Posted by:Gail Overton

Subscribe now to Laser Focus World magazine; It’s free!

Follow us on Twitter

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!