HZB researchers take detailed x-ray images of intact undyed cells

Nov. 22, 2010
Combining the use of x-rays with nanotomography has allowed researchers at Helmholtz-Zentrum Berlin (HZB) to image structures of the components of mammalian cells in three dimensions at a 30 nm resolution.

Berlin, Germany--Combining the use of x-rays with nanotomography has allowed researchers at Helmholtz-Zentrum Berlin (HZB) to image structures of the components of mammalian cells in three dimensions at a 30 nm resolution.1

The technique has a crucial advantage over the conventional transmission electron microscope (TEM) in that, for the first time, there is no need to chemically fix, stain, or cut cells to study them. Instead, whole living cells are fast-frozen and studied in their natural environment. The new method exploits the natural contrast between organic material and water to form an image of all cell structures, delivering an immediate 3D image.

With the high resolution achieved by their microscope, the researchers, in cooperation with colleagues of the National Cancer Institute in the USA, have reconstructed mouse adenocarcinoma cells in 3D, seeing features such as the double membrane of the cell nucleus, nuclear pores in the nuclear envelope, membrane channels in the nucleus, numerous invaginations of the inner mitochondrial membrane, and inclusions in cell organelles such as lysosomes. Such insights will be crucial for shedding light on inner-cellular processes: such as how viruses or nanoparticles penetrate into cells or into the nucleus.

The researchers achieved this high 3D resolution by illuminating the minute structures of a frozen-hydrated cell with partially coherent light generated by BESSY II, using a high-resolution condenser lens.

REFERENCE:

1. Gerd Schneider et al., Nature Methods, (DOI:10.1038/nmeth.1533).

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it's free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!