Flexible silicon expands application possibilities

Oct. 8, 2006
Single-crystal semiconductor materials such as silicon (Si) and gallium arsenide have previously been transferred to flexible polymers to create thin-film transistors (TFTs) on plastic; however, the process is limited and cumbersome.

Single-crystal semiconductor materials such as silicon (Si) and gallium arsenide have previously been transferred to flexible polymers to create thin-film transistors (TFTs) on plastic; however, the process is limited and cumbersome. Researchers at the University of Wisconsin-Madison (Madison, WI) have instead developed a simpler, more versatile transfer technique that allows them to create strained-silicon TFTs with high drive current and high transconductance, making them excellent candidates for use in displays, solar cells, and biosystem implants.

Click here to enlarge image
The TFT active layer is formed as a thin membrane on silicon-on-insulator (SOI) substrates. Both strained- and unstrained-silicon TFTs are fabricated in a similar process using a sandwich structure of Si and silicon-germanium alloy. Photolithography is used to pattern the membrane, which is then transferred (using a “dry” printing method) to a flexible polyethylene substrate onto which a layer of photoresist has been applied that serves as both an adhesive and as the gate-dielectric layer for the TFTs. Contact Zhenqiang Ma at [email protected]. Laser Focus World October, 2006

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!