Supernova legacy survey finds superbright, supermassive supernova

Sept. 21, 2006
September 20, 2006, Berkeley, CA -- A group of scientists affiliated with the SuperNova Legacy Survey (SNLS) have found startling evidence that there is more than one kind of Type Ia supernova, a class of exploding stars which until now has been regarded as essentially uniform in all important respects.

September 20, 2006, Berkeley, CA -- A group of scientists affiliated with the SuperNova Legacy Survey (SNLS) have found startling evidence that there is more than one kind of Type Ia supernova, a class of exploding stars which until now has been regarded as essentially uniform in all important respects. Supernova SNLS-03D3bb is more than twice as bright as most Type Ia supernovae but has much less kinetic energy, and appears to be half again as massive as a typical Type Ia.

The lead authors of the report, which appears in the September 21 issue of Nature, include Andrew Howell, formerly of the Physics Division at Lawrence Berkeley National Laboratory and now at the University of Toronto, and Peter Nugent, an astrophysicist with Berkeley Lab's Computational Research Division. Other lead authors are Mark Sullivan of the University of Toronto and Richard Ellis of the California Institute of Technology. These and many of the other authors of the Nature paper are members of the Supernova Cosmology Project based at Berkeley Lab.

Because almost all Type Ia supernovae found so far are not only remarkably bright but remarkably uniform in their brightness, they are regarded as the best astronomical "standard candles" for measurement across cosmological distances. In 1998, after observations of many distant Type Ia supernovae, the Supernova Cosmology Project and the rival High-Z Supernova Search Team announced their discovery that the expansion of the universe is accelerating -- a finding that would soon be attributed to the unknown something called dark energy, which fills the universe and opposes the mutual gravitational attraction of matter.

"Type Ia supernovae are thought to be reliable distance indicators because they have a standard amount of fuel -- the carbon and oxygen in a white dwarf star -- and they have a uniform trigger," says Nugent. "They are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass, which is about 1.4 times the mass of our sun. The fact that SNLS-03D3bb is well over that mass kind of opens up a Pandora's box."

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!