Free Electron Laser exceeds 14 kW in the infrared

Nov. 9, 2006
November 9, 2006, Newport News, VA--The Free-Electron Laser (FEL), located at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), produced a 14.2 kilowatt (kW) beam of laser light at an infrared wavelength of 1.61 microns on October 30.

November 9, 2006, Newport News, VA--The Free-Electron Laser (FEL), located at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), produced a 14.2 kilowatt (kW) beam of laser light at an infrared wavelength of 1.61 microns on October 30.

"This wavelength is of interest to the Navy for transmission of light through the maritime atmosphere and for material science applications," said Fred Dylla, Jefferson Lab's Chief Technology Officer and Associate Director of the Free-Electron Laser Division. The FEL is supported by the Office of Naval Research (Arlington, VA), the Naval Sea Systems Command (Washington Navy Yard, DC), the Air Force Research Laboratory (WPAFB, OH), and the High Energy Laser Joint Technology Office (Albuquerque, NM), as well as by the Commonwealth of Virginia (Richmond). The laser's new capabilities will enhance a wide range of applications, such as shipboard anti-missile defense and other defense applications as well as manufacturing technologies and the support of scientific studies in chemistry, physics, biology and medicine.

This is another record for the powerful laser, which was also the first to achieve 10 kW in the infrared at 6 microns in July 2004.

"This milestone supports the Navy's vision for the ultimate development of a very high power FEL that will serve as part of a ship-based weapon system and provide precise, speed-of-light energy projection at sea," added ONR program manager Lewis DeSandre. "The Navy and Department of Energy research communities continue to work on the steady development of FEL technology. The goal is to reach higher power levels that will provide persuasive evidence and support the eventual realization of FEL as a promising candidate for meeting several of the Navy's broad mission requirements and defeating 21st century threats."

For more information, contact the Office of Naval Research.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!