Upconversion nanoparticles in eyes enable mice to see infrared; may work for humans too

Nonlinear optical nanoparticles injected into the eyes of mice bind to photoreceptors; the mice see scenes at 1000 nm.

Upconversion nanoparticles in eyes enable mice to see infrared; may work for humans too
Upconversion nanoparticles in eyes enable mice to see infrared; may work for humans too
(Still from video below) No mammalian eyes can naturally see past the visible spectral region into the infrared. The visible region is often defined as 400 to 700 nm, although the human eye has a low and declining, but real, sensitivity to light out to 780 nm (and a little beyond that, if you're willing to look at laser light intense enough to damage your eyes). The evolutionary reason for this drop in spectral sensitivity is that, for mammalian opsin-based receptors, the lower energy of IR photons would require a lower energy barrier in the opsin, which would end up boosting the relative thermal noise energy too high for practicality. As for artificial digital imaging, there is a technique called upconversion IR imaging, in which the imaging system uses nonlinear optics to shorten the wavelength of the IR light, allowing less-costly cameras to do the imaging. Now, a multidisciplinary group of researchers led by Xue and Jin Bao at the University of Science and Technology of China (Hefei, China) as well as Gang Han at the University of Massachusetts Medical School (Worcester, MA), have developed a simple way to enable mammalian vision in the near-IR out to 1000 nm, using upconversion imaging -- and have tested it successfully on mice.1 The approach they take is quite simple: they inject photoreceptor-binding upconversion nanoparticles (pbUCNPs) into the eyes of mice so that the particles are near the retina. The particles, which are 38 nm in size and made of the nonlinear optical material β-NaYF4:20%Yb,2%Er@β-NaYF4 (core-shell structure), convert light with a peak wavelength of 980 nm to light with a 535 nm peak. The researchers determied that the particles bind to glycoproteins in the retina's photoreceptors. A single injection of nanoparticles in the mice's eyes bestowed infrared vision for up to 10 weeks with minimal side effects, allowing them to see infrared light even during the day and with enough specificity to distinguish between different shapes. Mice that received the injections showed unconscious physical signs that they were detecting infrared light, such as their pupils constricting, while mice injected with only the buffer solution didn't respond to infrared light. To test whether the mice could make sense of the infrared light, the researchers set up a series of maze tasks to show the mice could see infrared even in daylight conditions, simultaneously with visible light.(Video: Ma et al./Cell) The researchers believe the bio-integrated nanoparticles are desirable for potential infrared applications in encryption, security, and military operations. "In the future, we think there may be room to improve the technology with a new version of organic-based nanoparticles, made of FDA-approved compounds, that appear to result in even brighter infrared vision," says Han. Source: https://www.eurekalert.org/pub_releases/2019-02/cp-nmi022019.php REFERENCE: 1. Yuqian Ma et al., Cell (2019); https://doi.org/10.1016/j.cell.2019.01.038
More in Research