Self-assembled optical metasurface sensors for bioscience are dielectric, not metallic

Feb. 14, 2019
Easy-to-make metasurface components will serve as protein monolayer detectors for science and medical use.

Engineers from École polytechnique fédérale de Lausanne (EPFL Lausanne, Switzerland) have now discovered a simple way of creating optical metasurfaces in just a few minutes—without needing a clean room and using a simple "dewetting" method.The metasurfaces could be used to create flexible sensors to be placed directly on a patient's skin to measure things like pulse and blood pressure, or to detect specific chemical compounds.

Creating metasurfaces using conventional photolithographic methods, is a fastidious, several-hour-long process that must be done in a clean room. But the EPFL group has now developed a simple method for making them in just a few minutes, resulting in dielectric glass metasurfaces that can be either rigid or flexible. The new method exploits a natural process already used in fluid mechanics: dewetting. This occurs when a thin film of material is deposited on a substrate and then heated. The heat causes the film to retract and break apart into nanoparticles.

"Dewetting is seen as a problem in manufacturing, but we decided to use it to our advantage," says Fabien Sorin, one of the researchers. Using this approach, the engineers were able to create dielectric glass metasurfaces (as opposed to the usual metallic metasurfaces) for the first time.

The advantage of dielectric metasurfaces is that they absorb very little light and have a high refractive index. To construct these metasurfaces, the engineers first created a substrate textured with the desired architecture. Then they deposited chalcogenide glass in films tens of nanometers thick. The substrate was subsequently heated for a couple of minutes until the glass became more fluid and nanoparticles began to form in the sizes and positions dictated by the substrate's texture. The engineers' method is so efficient that it can produce highly sophisticated metasurfaces with several levels of nanoparticles or with arrays of nanoparticles spaced just 10 nm apart. That makes the metasurfaces highly sensitive to changes in ambient conditions, such as the presence of even very low concentrations of bioparticles.



1. Tapajyoti Das Gupta et al., Nature Nanotechnology (2019);

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!