Metamaterial with hyperbolic dispersion is 51 µm thick

June 1, 2009
While the idea of a metamaterial-based invisibility cloak is fascinating, transforming the idea into reality is a daunting task.

While the idea of a metamaterial-based invisibility cloak is fascinating, transforming the idea into reality is a daunting task. This is especially true at optical frequencies, where the required metamaterial structures have geometries with features sized at the nanometer scale. Making an invisibility cloak, or indeed many other devices made possible by metamaterials, requires the construction of a bulk (3-D) metamaterial, as opposed to a thin-film (2-D) version. Rather than trying to make a 3-D metamaterial using difficult and expensive nanolithographic techniques, researchers at Norfolk State University (Norfolk, VA) and Purdue University (West Lafayette, IN) have been working on a much simpler approach that now has allowed them to create an optical metamaterial 51 µm thick.

An anodic alumina membrane, 1 cm × 1 cm × 51 µm and naturally full of 35 nm holes, became the base material; silver was electrochemically plated in the holes, mostly filling them up and creating an irregular array of parallel nanowires. Angles of refraction in the material were studied at different wavelengths, revealing that the metamaterial has hyperbolic dispersion for wavelengths greater than 0.84 µm; in addition, the direction of refraction for 632.8 nm light was consistent with a refractive index of less than 1. Contact Mikhail Noginov at [email protected].

Sponsored Recommendations

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Catalog of Filters and Filter Sets

Nov. 27, 2023
This price list provides information about the filter sets Chroma Technology has created for the multitude of fluorochromes that are typically used in epi-fluorescence microscopy...

Handbook of Optical Filters for Fluorescence Microscopy

Nov. 27, 2023
Fluorescence microscopy requires optical filters that have demanding spectral and physical characteristics. These performance requirements can vary greatly depending on the specific...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!