Copper-graphene composite: the next laser heat-exchanger material?

April 11, 2012
Raleigh, NC--At North Carolina State University, assistant professor Jag Kasichainula has created a graphene-based cooling technique for lasers and other optoelectronics, as well as for power electronics.

Raleigh, NC--At North Carolina State University, assistant professor Jag Kasichainula has created a graphene-based cooling technique for laser diodes and other optoelectronics, as well as for power electronics.1 A composite of graphene in a copper matrix (prepared by electrochemical codeposition from a copper sulfate solution with suspended graphene oxide) shows a thermal conductivity about 25% greater than that of pure copper.

At room temperature, the copper-graphene composite has a thermal conductivity of 380 W/m.K, compared to copper’s 460 W/m.K. The new composite exhibits thermal conductivity of 510 W/m.K at 250 K (–23 C) and 440 W/m.K at 350 K (77 C).

“Both the copper-graphene and indium-graphene have higher thermal conductivity, allowing the device to cool efficiently,” says Kasichainula. “The copper-graphene composite is also low-cost and easy to produce. Copper is expensive, so replacing some of the copper with graphene actually lowers the overall cost.”

(However, if cost is no object, use diamondit has a thermal conductivity of about 1000 W/m.K.)

REFERENCE:

1. K. Jagannadham, Metallurgical and Materials Transactions B (2012); DOI: 10.1007/s11663-011-9597-z

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!