U. of Sydney researchers unveil mode-locked laser based on microcavity resonator

April 5, 2012
Sydney, Australia--A group at the University of Sydney and its international collaborators has created the first mode-locked laser with a microring cavity as its resonator.

Sydney, Australia--A group at the University of Sydney and its international collaborators has created the first mode-locked laser with a microring resonator as its cavity.1 The laser, which emits pulses at rates as high as 200 GHz with a spectral linewidth well under 130 kHz, operates via a new form of mode-locking that the researchers call "filter-driven four-wave mixing."

The team also includes researchers from INRS-EMT (Varennes Québec, Canada), IPCF-CNR, UOS Roma, and ISC-CNR UOS Montelibretti, ( Rome, Italy), Infinera (Sunnyvale, CA), and the City University of Hong Kong.

CMOS compatible

One great advantage of some integrated photonics is that they are CMOS-compatible, meaning that they can be fabricated using the same inexpensive, large-scale processes used to fabricate computer chips. The U. of Sydney laser falls into this category.

The microring laser's cavity modes are phase-locked, which, via the resulting frequency combs, could lead to new optical clocks for metrology, integrated photonics, and communications.

REFERENCE:

1. M. Peccianti et al., Nature Communications 4, article no. 765, April 3, 2012.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!