GaInP photovoltaic cells tap underwater solar energy

June 7, 2012
Washington, DC--Scientists at the U.S. Naval Research Laboratory, Electronics Science and Technology Division, are doing research on underwater photovoltaics, developing high-bandgap solar cells capable of producing sufficient power to operate electronic sensor systems at depths of 9 m.
Power density of GaInP and crystalline silicon cells underwater is shown as a function of depth. (Image: U.S. Naval Research Laboratory)


Washington, DC--Scientists at the U.S. Naval Research Laboratory, Electronics Science and Technology Division, are doing research on underwater photovoltaics, developing high-bandgap solar cells capable of producing sufficient power to operate electronic sensor systems at depths of 9 m.

Even though the absolute intensity of solar radiation is lower underwater, the spectral content is narrow and thus lends itself to high conversion efficiency if the solar cell is well matched to the wavelength range. Previous attempts to operate solar cells underwater have focused on crystalline silicon solar cells and, more recently, amorphous silicon cells.

High-quality gallium indium phosphide (GaInP) cells are well suited for underwater operation; GaInP cells have high quantum efficiency at wavelengths between 400 and 700 nm (visible light) and intrinsically low dark current, which is critical for high efficiency in low light conditions.

In addition, the filtered spectrum of the sun underwater is biased toward the blue/green portion of the spectrum and thus higher-bandgap cells such as GaInP perform much better than conventional silicon cells, says Phillip Jenkins, head, NRL Imagers and Detectors Section.

Underwater autonomous systems and sensor platforms are severely limited by the lack of long endurance power sources. To date, these systems must rely on on-shore power, batteries or solar power supplied by an above water platform. Attempts to use photovoltaics have had limited success, primarily due to the lack of penetrating sunlight and the use of solar cells optimized more towards the unimpeded terrestrial solar spectrum.

"The use of autonomous systems to provide situational awareness and long-term environment monitoring underwater is increasing," said Phillip Jenkins, head, NRL Imagers and Detectors Section. "Although water absorbs sunlight, the technical challenge is to develop a solar cell that can efficiently convert these underwater photons to electricity."

Preliminary results at a maximum depth of 9.1 m reveal electrical output to be 7 W/m2, sufficient to demonstrate that there is useful solar power to be harvested at depths commonly found in near-shore littoral zones.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!