Near-IR silicon sensor has 20X higher detection efficiency

Feb. 13, 2014
Tokyo and Fukuoka, Japan--Researchers at the University of Tokyo, Kyushu University, and NMEMS Technology Research Organization have unveiled their approach to improving the sensitivity of silicon (Si)-based near-IR sensors.

Tokyo and Fukuoka, Japan--Researchers at the University of Tokyo, Kyushu University, and NMEMS Technology Research Organization have unveiled their approach to improving the sensitivity of silicon (Si)-based near-IR sensors.

The technology was developed by Isao Shimoyama, a professor at the University of Tokyo; Chihaya Adachi, a professor at Kyushu University; Yoshiharu Ajiki, an exchange researcher at NMEMS Technology Research Organization, and others. They made a device using Si rather than germanium (Ge), improving detection efficiency by adding 10 nm-scale metal nanostructures to Si to increase the electric current generated by collecting near-IR light.

The nanostructures were fabricated using the properties of organic materials rather than more-elaborate methods like photolithography. An organic semiconductor was self-assembled on Si and then a gold (Au) film was deposited on top.

Electric current was efficiently generated for light at a 1.2 μm wavelength. Though the nanostructures were not arranged in a periodic array, their detection efficiency for wavelengths near 1.2 μm was improved by a factor of about 20 over conventional Si detectors.

The announcement was made at IEEE MEMS 2014 (Jan 26 to 30, 2014; San Francisco, CA). The title of the lecture was "Near Infrared Photo-detector Using Self-assembled Formation of Organic Crystalline Nanopillar Arrays."

Source: http://techon.nikkeibp.co.jp/english/NEWS_EN/20140207/332920/

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!