Measurement standard aims to satisfy both LED and lighting manufacturers

Dec. 1, 2008
December 1, 2008--Researchers at the National Institute of Standards and Technology (NIST) have proposed a new low-cost approach to measuring the optical properties of high-power light-emitting diodes (LEDs). The method promises accurate, reproducible, comparable measurements of intensity and color, and addresses needs of both LED and lighting manufacturers. It hopes to overcome barriers for solid-state lighting commercialization that have resulted from a lack of common metrics standards.

December 1, 2008--The lack of common measurement methods among light-emitting diode (LED) and lighting manufacturers has affected the commercialization of solid-state lighting products. Researchers at the National Institute of Standards and Technology (NIST) have proposed a new, economical method to allow LED and lighting manufacturers to obtain accurate, reproducible, and comparable measurements of brightness and color in LEDs.

The quality of the light that high-power LEDs produce depends on their operating temperature. To speed production, LED manufacturers typically use a high-speed pulsed test to measure the color and brightness of their products. However, because pulsed measurements do not give the LED chip time to warm to its normal operating temperature, the measured light output quality is not the same as would be realized in actual lighting products.

The lighting industry uses a steady-state DC measurement approach similar to that used for traditional incandescents and fluorescents. This method involves turning the light on, letting it warm up, and measuring the characteristics of the light produced. Although time-consuming, DC measurement provides a more realistic test of how the lighting product will perform in a consumer's living room. The problem was that researchers did not understand how the DC measurement results correlated with the pulse measurement results that LED manufacturers use.

NIST scientists Yuqin Zong and Yoshi Ohno have created a standard high-power LED measurement method that satisfies the needs of both LED and lighting manufacturers. The NIST method leverages the fact that the optical and electrical characteristics of an LED are interrelated and a function of the LED's junction temperature (the temperature of the semiconductor chip inside the LED, which is normally very difficult to measure).

The researchers' new method entails mounting the LED on a temperature-controlled heat sink set to the desired LED junction temperature between 10 and 100 °C. After applying a pulse of electricity through the LED and measuring the voltage flowing across the junction, scientists turn on the DC power to the LED and adjust the temperature of the heat sink to ensure the voltage remains constant. When measuring the light output of an LED, this approach allows researchers to achieve a junction temperature similar to that found in a commercial lighting fixture. The measurement results can be reproducible regardless of pulse or DC operation, or type of heat sink.

The new method also allows the measurement of heat flow in and out of the LED, enabling LED and lighting manufacturers to improve the design of the LED and the thermal management system of the associated lighting product. Effective thermal management is important in lighting products because LEDs perform more efficiently and last much longer at lower temperatures.

The NIST researchers describe the method in a new paper: Y. Zong and Y. Ohno. New practical method for measurement of high-power LEDs. Proc. CIE Expert Symposium on Advances in Photometry and Colorimetry. CIE x033:2008, 102-106 (2008).

Posted by Barbara G. Goode, [email protected]

Sponsored Recommendations

Next generation tunable infrared lasers

Nov. 28, 2023
Discussion of more powerful and stable quantum cascade tunable infrared lasers, applications, and test results.

What AI demands mean for data centers

Nov. 28, 2023
The 2023 Photonics-Enabled Cloud Computing Summit assembled by Optica took an aggressive approach to calling out the limitations of today’s current technologies.

SLP feature for lighting control available on cameras offering

Nov. 28, 2023
A proprietary structured light projector (SLP) feature is now available on the company’s camera series, including the ace 2, boost R, ace U, and ace L.

Chroma Customer Spotlight - Dr. David Warshaw, About his Lab

Nov. 27, 2023
David Warshaw, Professor and Chair of Molecular Physiology and Biophysics at the University of Vermont (UVM), walks us through his lab. Learn about his lab’s work with the protein...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!