Grant funds laser processing of nanotechnology in UK

March 20, 2008
March 20, 2008, Guildford, Surrey, England--Nanomaterial processing using lasers has received funding of £0.87M (US$1.36M) at the University of Surrey.

March 20, 2008, Guildford, Surrey, England-- With the predicted ramping up of nanotechnology based materials over the next decade, expectations are high that demand for high-tech materials will also skyrocket. Already the evidence is present for a revolution in the manufacture of materials based on nano-engineered structures. However, prior to these "nanomaterials" becoming dominant in the marketplace, a precise understanding of how to tailor their properties for specific applications, coupled with cheap, reliable fabrication methods is required.

Scientists at the Advanced Technology Institute (ATI) of the University of Surrey and at the School of Chemistry in the University of Bristol have been awarded funding of nearly £0.87M (US$1.36M) from the Engineering and Physical Sciences Research Council (EPSRC) to investigate techniques using high-power, short-pulsed lasers for the production of important nanomaterials, including nanoclusters, nanotubes and nanorods of carbon and zinc oxide, with controllable electrical and optical properties. These techniques, including pulsed laser deposition and laser annealing, are ideal research tools for rapid investigation of a wide variety of synthesis environments, which should enable a plethora of new technologically significant nanomaterials. This project will be highly synergistic, addressing the full range of challenges, from obtaining a fundamental understanding of the growth processes to producing physical, chemical and biological sensors based on the products.

The ATI's Dr. Simon Henley, who will spearhead the research effort, said, "A focused short laser pulse can produce very extreme conditions, such as high temperatures and pressures, but only at the point of focus of the beam. We can use these conditions to generate highly energetic atoms and ions to drive a synthesis that would normally require the whole reaction to be performed in a high-temperature furnace."

He added, "This collaboration brings together two groups with well-matched expertise in complementary areas. The group at Bristol specializes in obtaining a precise understanding of the chemistry occurring during laser synthesis via optical and mass spectrometry, and the laser deposition research at the ATI focuses on producing nanoscale electronic and optical devices."

Professor Mike Ashfold, lead researcher at Bristol commented, "It is good to have two current EPSRC Portfolio Partnerships working so closely. Without such a bold initiative by EPSRC five years ago, this sort of highly enabling research would not have been possible. We are very excited about the potential outcomes of this collaboration."

Professor Ravi Silva, director of the ATI explained, "High-quality research collaborations such as these take time to build and support received from EPSRC has encouraged this. We look forward to working closely with industry and forging new links in novel nano-material production associated with laser processing. The ATI is particularly strong in examining the potential for spinout activities in nanotechnology, as seen by its recent record and growing patent portfolio. We are confident this project will allow us to continue this trend."
--V.C.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!