Laser-enabled advanced packaging assembles chips onto flex substrates

Oct. 24, 2011
Fargo, ND--North Dakota State University (NDSU) scientists have developed a laser-assisted technique for assembly of ultrathin semiconductor chips onto rigid and flexible substrates.
A small die has been transferred and affixed to interconnects on a flex substrate using laser-enabled advanced packaging (LEAP). (Image: NDSU)

Fargo, ND--North Dakota State University (NDSU) scientists have developed a laser-assisted technique for assembly of ultrathin semiconductor chips onto rigid and flexible substrates. Called laser-enabled advanced packaging (LEAP), the approach allows semiconductor chips less than 50 µm thick to be rapidly placed and fixed at specific locations and orientations with high precision.

The technology has the potential to enable high-volume handling, placement, and interconnection of miniature microelectronic components, including various types of active and passive embedded components. LEAP has been under development by the Advanced Electronics Packaging research group at the North Dakota State University Center for Nanoscale Science and Engineering (CNSE) since 2008.

Recently the NDSU researchers used technology to fabricate a functional electronic device with a laser-assembled, ultrathin silicon chip embedded in a flexible substrate. A key part of LEAP is a (patent-pending) process called thermo-mechanical selective laser-assisted die transfer (tmSLADT). “The LEAP technology and tmSLADT process are important because they potentially enable a new class of inexpensive electronic devices by the high-volume placement and interconnection of various types of ultra-thin, fine pitch, active and passive circuit components,” said Aaron Reinholz, associate director for electronics technology at NDSU CNSE. “These types of components are especially of interest for flex-substrate electronics, as they allow devices to bend, roll, and be manipulated into complex geometries.” Such devices include garment-integrated RFID tags, intelligent sensors platforms, and self-adapting conformal antennas.

The LEAP technology is outlined in “Laser-Enabled Advanced Packaging of Ultrathin Bare Dice in Flexible Substrates,” accepted for publication by IEEE Transactions on Components, Packaging and Manufacturing Technology, manuscript TCPMT-2011-105.



Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!