Crossed femtosecond filaments create plasma grating in air

Nov. 9, 2011
A group at East China Normal University has shown self-channeling filaments created by femtosecond-laser pulses can interact in air to form a 2D plasma grating that diffracts light.

A group at East China Normal University (Shanghai, China) has shown self-channeling filaments created by femtosecond-laser pulses can interact in air to form a 2D plasma grating that diffracts light. The team split 50 fs pulses at a 1 kHz repetition rate from a Ti:sapphire laser into three equal-energy pulses, each of which is focused into an air region so the filaments (and the synchronized pulses) cross each other at angles from 3º to 6º. The resulting interference-induced gratings were enhanced by nonlinear Kerr and plasma effects and formed channels a few millimeters long. The input pulses were guided into the plasma channels; noncollinear pulses at arbitrary incidence angles could be coupled into the channels.

The plasma structures were characterized using time-resolved holographic imaging, with the weak test probe propagating perpendicularly through the plasma grating. From the measured phase profile, the change in refractive index for a single filament, a 1D grating, and a 2D grating were 1.47 × 10-5, 2.21 × 10-4, and 3.53 × 10-4, respectively. Third-harmonic pulses generated in air by the filaments were diffracted by the gratings as per the Bragg condition, confirming the measurements. Potential uses include plasma photonics for pulse compression and shaping. Contact Heping Zang at[email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!