All-optical technique produces Bose-Einstein condensates

July 3, 2001
Georgia Tech physicists have demonstrated the first all-optical technique for producing Bose-Einstein condensates--producing a form of matter in which atoms cooled to a fraction of a degree above absolute zero stop their normal motion and enter a single quantum state in which all atoms behave identically.

Georgia Institute of Technology (Atlanta, GA) physicists have demonstrated the first all-optical technique for producing Bose-Einstein condensates--producing a form of matter in which atoms cooled to a fraction of a degree above absolute zero stop their normal motion and enter a single quantum state in which all atoms behave identically. Operating inside a vacuum chamber, the technique uses powerful carbon-dioxide lasers to confine gaseous rubidium-87 atoms and produce the final cooling step needed to form the condensate. The Georgia Tech researchers believe their method is simpler, faster, and more flexible than the magnetic confinement technique used to produce the condensates since 1995. Dispensing with magnetic confinement should allow the new technique to be used on a wider variety of atoms, atomic mixtures, and even molecules.

“This is the first time we've been able to make a condensate using a completely different technique,” explains Michael Chapman, an assistant professor in the Georgia Tech School of Physics. “The simplicity of the technique and its speed are somewhat remarkable given that people have been trying to get all-optical Bose-Einstein condensation for so long.” Chapman and colleagues Murray Barrett and Jacob Sauer describe their work in the July 2 issue of Physical Review Letters.

Physicists create Bose-Einstein condensates through a multistep process that uses both magnetic and optical techniques to confine and cool the gaseous atoms. First, a magneto-optical trap is used to confine the cloud of atoms. In a technique known as Doppler cooling, carefully-tuned lasers then remove energy from the atoms, dropping their temperature to a few millionths of a degree above absolute zero (-273.15 Celsius).

In the technique used since 1995, powerful magnetic fields confine or trap the cloud of atoms during evaporative cooling. Applying a field of radio frequency energy causes the most energetic and hottest atoms to be ejected from the confined cloud, producing the final temperature drop needed produce condensation.

The Georgia Tech process relies on an all-optical technique (two crossed laser beams) to confine the cloud of atoms during evaporative cooling. To bring about the final cooling step, researchers rapidly reduce the laser power, lowering the depth of the confinement. That forces the hottest atoms to evaporate, forming the Bose-Einstein condensate in just two seconds--several times faster than the magnetic process.

Physicists have attempted to produce condensates through optical means for years. Chapman doesn't yet know why his team succeeded where others failed, but he speculates that the carbon-dioxide lasers or the rubidium-87 isotope may have provided an edge. The lasers can be precisely controlled to avoid transferring energy to the atom cloud, and the rubidium-87 isotope has properties more favorable than the rubidium-85 studied by other researchers.

Because they relies on interaction with the magnetic dipole of atoms, magnetic confinement techniques work only with certain atoms in some of their energy states. That limits the elements from which physicists can make Bose-Einstein condensates.

The Georgia Tech optical technique has no such restriction, allowing physicists to use any atom that can be sufficiently cooled, including alkali rare earth elements such as magnesium and strontium. It could even produce condensates from atomic mixtures and molecules.

“That's quite exciting from a physics standpoint, because it is a whole new aspect of Bose-Einstein condensation that wasn't considered by Bose or Einstein,” notes Chapman. “Our technique is amenable to trapping a mixture of atoms, which opens up the possibility of condensing two different species of atoms at the same time.” He adds that the optical technique also uses less sophisticated traps and lower vacuum levels and doesn�t need bulky, power-hungry magnetic coils.

So far, the Georgia Tech researchers produced condensates containing up to 35,000 atoms--far less than the millions of atoms captured by magnetic means--but Chapman sees no fundamental reason why the optical process can't be scaled up to match those numbers. Though potential applications remain far in the future, the Bose-Einstein phenomenon has attracted intense interest because it could do for atoms what lasers have done for photons. Lasers produce streams of photons with identical wavelengths and energy levels, all moving in the same direction. This coherence powers a broad range of applications from high-speed communications to metal cutting.

“A lot of the excitement about atomic Bose-Einstein condensates is that this sort of coherence--getting all the atoms to be in one state and do everything at the same time--could eventually lead to some interesting developments,” Chapman explains. “Where this will lead is hard to predict, but historically whenever we've been able to get more control over physical systems, that has led to dramatic new directions in science and technology.” Atomic lithography, coherent matter wave optics, and coherent atomic interferometry are among the applications proposed.

Chapman's research was supported by the US National Security Agency, the U.S. Army Research Office and the Advanced Research and Development Activity (ARDA). For more details, contact him at [email protected].

Sponsored Recommendations

Current Trends in Laser Absorption Spectroscopy: More than Just Beer's Law

Dec. 5, 2023
Dive into the cutting-edge world of absorption spectroscopy in our upcoming webinar, exploring groundbreaking techniques such as cavity ringdown spectroscopy, photoacoustic spectroscopy...

Insights on the Global Quantum Computing Market

Dec. 5, 2023
Dive into the cutting-edge realm of quantum computing with the Quantum Computing Market Forecast, a groundbreaking analysis by Hyperion Research, backed by the Quantum Economic...

Case Study – Large OAP Mirrors

Dec. 4, 2023
Customized Large Optics by Avantier: Meeting Unique Needs with Precision and Quality In the ever-evolving world of optical technology, the demand for customized large optics ...

Next-level virus detection via WIDE-MIP microscopy

Dec. 4, 2023
Rapid and accurate detection of a virus can quite literally make the difference between life and death. With this in mind, researchers created a mid-infrared photothermal microscope...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!