Analog Devices Introduces 16-Bit Successive Approximation ADC

Dec. 20, 2001
Analog Devices, Inc. has introduced an analog-to-digital converter (ADC) that is twice as fast, twice as precise and four times more power efficient than competitive parts. The one-million-sample-per-second successive-approximation (SAR) ADC is accurate to one least significant bit (LSB) integral non-linearity (INL), delivering industry-leading speed and precision to a variety of applications.

Analog Devices, Inc. has introduced an analog-to-digital converter (ADC) that is twice as fast, twice as precise and four times more power efficient than competitive parts. The one-million-sample-per-second successive-approximation (SAR) ADC is accurate to one least significant bit (LSB) integral non-linearity (INL), delivering industry-leading speed and precision to a variety of applications. The AD7677 PulSAR ADC is in production today for use in systems such as medical instrumentation, spectrum analyzers, data acquisition systems, scanners, wired communications and optical networking, where it can replace hybrids that cost over ten times more.

ADI reached this new level of precision only months after the announcement of the AD7671, the first one-mega-sample-per-second (MSPS), 16-bit SAR converter. ADI is the first and only company to reach 1 MSPS speeds in a 16-bit SAR converter. SAR converters, which comprise the majority of the ADC market, are widely considered the most cost-effective technology for applications that require very precise digital modeling of higher frequency analog signals.

"Design engineers no longer have to sacrifice speed for accuracy, or vice versa. Whether the challenge is to process more channels or to sample each channel faster, the AD7677 will deliver the highest accuracy ever available," said Mike Britchfield, product line director, Precision Converters, Analog Devices. "By eliminating the traditional speed/accuracy trade-off, we free designers to invent new applications in medical, communications, industrial, test and measurement systems."

The AD7677 is a fully differential ADC that offers 16-bit resolution with no missing codes and a maximum INL of 1 LSB. The AD7677 has no pipeline delay and operates at three different speeds, including 1 MSPS 'warp' mode for asynchronous sampling applications, 800 kSPS 'normal' mode, and an 'impulse' mode, in which power consumption varies with throughput rate. Signal to Noise and Distortion (SINAD) for the AD7677 is typically 94dB, with a minimum of 92dB. The device operates from a single 5 V power supply and dissipates only 115 milliwatts (typical). It consumes only 7 microwatts when in power-down mode.

The AD7677 is designed to interface easily with the rest of the circuit. Bipolar/unipolar inputs accommodate variable input ranges. An internal conversion clock, error correction circuits, and both serial and parallel system interface ports are integrated on-chip. With its compact, 9x9 mm 48-lead LQFP (low-profile quad flat pack) package, the AD7677 saves board space, is pin-compatible with the AD7664, AD7675 and AD7676 PulSAR family of 16-bit SAR converters, and is specified to operate from -40 to +85 degrees Celsius.

The AD7677 is priced at $39.76 in 1,000 piece quantities. Evaluation boards and production quantities are now available. For more information,

visit: http://products.analog.com/products/info.asp?product=AD7677

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!