IR spectroscopy to map comet's nucleus composition

June 18, 2001
Instruments aboard a spacecraft to be launched next year to explore two, and perhaps three or more, comets in the solar system will for the first time provide a “fingerprint” of the surface of cometary nuclei, giving the first firm evidence of the composition of the icy, rocky objects.

Instruments aboard a spacecraft to be launched next year to explore two, and perhaps three or more, comets in the solar system will for the first time provide a “fingerprint” of the surface of cometary nuclei, giving the first firm evidence of the composition of the icy, rocky objects.

About 50 of the world's leading comet experts, meeting at the Harvard Smithsonian Center for Astrophysics (Cambridge, MA), recently, were told that the spacecraft's infrared imaging spectroscopy will map the composition of the nucleus of comet Encke at a resolution of 100 to 200 m with enough detail to see craters and other large geologic features and to determine their composition.

Comet Encke will be the first target of NASA's Cornell University-led Comet Nucleus Tour (CONTOUR), scheduled for launch July 1, 2002. In a report prepared for the meeting, James Bell, Cornell assistant professor of astronomy and one of the scientists responsible for the spectrometer on the close-up imager, noted that the surface resolution of Encke's nucleus by the CONTOUR spectrometer will be even better than that obtained by the infrared spectrometer on the Near Earth Asteroid Rendezvous spacecraft during its recent orbital mission to asteroid 433 Eros. “The CONTOUR spacecraft will come within about 100 to 160 kilometers (62 to 100 miles) of the nucleus, although the exact distance is still in doubt because we don't know the orbital position of the nucleus with extreme precision,” according to Bell.

The imaging instrument, called the CONTOUR remote image/spectrograph, also will send back digital-camera images of Encke's nucleus. The camera will capture the images as the spacecraft speeds through the comet's dusty, gaseous head, called the coma, at 28 km/s in November 2003. Joseph Veverka, Cornell professor of astronomy and principal investigator on the $155 million mission, noted at the Cambridge meeting that "success" will be defined as obtaining digital images of the nucleus showing automobile-size details, such as rocks, about 4 m across. Encke, first discovered 225 years ago, is about 8 km (5 miles) long and has an average radius of about 2.5 km (1.5 miles). It orbits the sun once every 3.2 years, and its most recent apparition from Earth was last year. It is unique in that it has been observed from Earth on 56 of its apparitions, more than any other comet, including Halley.

Encke will not be the only comet on CONTOUR's agenda. In June 2006, the spacecraft is scheduled to encounter Comet Schwassmann-Wachmann 3 and, possibly, Comet d'Arrest in 2008. These targets are so-called Jupiter family comets because they are thought to have had their orbital periods shortened by previous gravitational encounters with the giant planet. The science team hopes it also might be possible to visit other kinds of comets, particularly primitive members of the dynamically young family that are in long elliptical orbits and might be making one of their first close passes by the sun.

Cornell senior research associate and science team member Peter Thomas noted at the meeting that, during the 30-minute flyby of the nucleus, the spacecraft's instruments will be able to obtain detailed compositional measurements of gas and dust in the near-nucleus environment. The comet's coma is a vast, extremely thin atmosphere, approaching the size of the sun, that consists of gas and debris thrown off the nucleus as it orbits the sun. The peak of this shedding of material is reached as the comet approaches the sun, and all the spacecraft's flybys will occur when the target comet is near this point in its solar orbit.

The scientific team will search the coma for evidence of curious particles previously detected in interstellar clouds by Jochen Kissel, a comet researcher at the Max-Planck-Institute for Extraterrestrial Physics in Garching, Germany. Kissel made his discovery in data sent back by NASA's Stardust mission, which will reach comet Wild 2 in 2004. The mission is using the same dust analyzer as will be carried by the CONTOUR. According to Veverka, “The particles have a completely weird composition and don't seem to have minerals in them but seem to be made of chains of carbon-hydrogen and oxygen-nitrogen, like polymers. But there isn't any polymer with that kind of composition that we are normally familiar with.”

Although Encke has been much studied from ground-based observatories, little is known about its composition, which is why the comet experts gathered to exchange information on the object. Most assumptions about Encke, the researchers agreed, are drawn from data gathered by the European Space Agency's Giotto spacecraft, which visited comet Halley in 1986. Much of what astronomers know about comets comes from the one object we've come close to, comet Halley, according to Casey Lisse, an astronomer at the University of Maryland. However, the CONTOUR images from Encke will be 25 times higher resolution than those from Halley.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!