Terahertz radiation source is optically steerable

June 28, 2013
Braunschweig, Germany--Researchers at the Physikalisch-Technische Bundesanstalt (PTB) have invented a way to easily steer a terahertz beam generated by a laser exciting a semiconductor.

Braunschweig, Germany--Researchers at the Physikalisch-Technische Bundesanstalt (PTB) have invented a way to easily steer a terahertz beam generated by a laser exciting a semiconductor. They demonstrated that exciting different directions of current flow in the semiconductor steers the generated terahertz beam. Rapid steering of terahertz radiation will be useful in, for example, body scanners and other security-based applications.

In the PTB experiments, ultrafast laser pulses produce two different currents flowing parallel and perpendicular to the surface of the semiconductor. The radiated terahertz field results from both currents, because of their polarization properties and areas of mutual gain or attenuation. From these interference effects, directional emission is produced. Because the direction of flow parallel to the surface current can be reversed by changing the polarization of the laser pulse (the vertical flow component is not polarization dependent and remains unchanged), the regions of gain and attenuation of the electromagnetic fields can be reversed, and radiation direction changed.

In initial experiments, a change in direction of the maximum terahertz field strength of up to 8° was measured. The angle of deflection depended on different excitation parameters and could be tailored. The dominant influences were determined, allowing optimization via a theoretical model. As a result, the maximum deflection angle can be increased, for example by using other semiconductor material systems, special silicon lenses, or external magnetic fields.

The researchers' findings are published in Applied Physics Letters.

Source: http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2013/pitext/pi130627.html

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!