Spray-on organic image-sensing coating is more efficient than conventional CMOS

Jan. 22, 2013
Munich, Germany--Researchers from Technische Universität München (TUM) have created an image sensor made of electrically conductive plastics sprayed on to the sensor surface of a CMOS (complementary metal oxide semiconductor) imager in an ultrathin layer.

Munich, Germany--Researchers from Technische Universität München (TUM) have created an image sensor made of electrically conductive plastics sprayed on to the sensor surface of a CMOS (complementary metal oxide semiconductor) imager in an ultrathin layer.1 The pixel fill factor is up to 100% higher than for conventional CMOS devices, say the researchers. The chemical composition of the polymer spray coating can be altered so that IR sensitivity is possible, which could enable low-cost IR sensors for compact cameras and smartphones.

The researchers tested spin- and spray-coating methods to apply the plastic in its liquid-solution form as precisely and cost-effectively as possible. They looked for a smooth plastic film no more than a few hundred nanometers thick. Spray-coating was found to be the best method, using either a simple spray gun or a spray robot.

Coating everything, including the electronics

According to the TUM group, organic sensors have already proven their worth in tests, being up to three times more sensitive to light than conventional CMOS sensors, whose electronic components conceal some of the pixels and therefore the photoactive silicon surface.

The organic sensors can be manufactured without the expensive post-processing step typically required for CMOS sensors, which involves for example applying microlenses to increase the amount of captured light. Every part of every single pixel, including the electronics, is sprayed with the liquid polymer solution, giving a surface that is 100 percent light-sensitive. The sensing surface has low-noise and high-frame-rate properties, say the TUM researchers.

While PCBM and P3HT polymers are ideal for the detection of visible light, other organic compounds like squaraine dyes are sensitive to light in the near-IR region.

REFERENCE:

1. Daniela Baierl et al., Nature Communications, doi:10.1038/ncomms2180

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!