Third-harmonic 351-nm radiation is emitted in a tight cone of coherent light

July 3, 2000
When a powerful infrared laser pulse hits a plasma of ionized hydrogen, it generates a tightly focused ring of coherent ultraviolet light.

When a powerful infrared laser pulse hits a plasma of ionized hydrogen, it generates a tightly focused ring of coherent ultraviolet light. A similar process could lead to a compact source of coherent x-rays. In a step toward that goal, a research team at the University of Michigan (Ann Arbor, MI) has detected high-frequency coherent light generated by a new technique. The scientists sent two 400-fs-long, 1053-nm pulses (with intensity 1017 W/cm2) through a gas of hydrogen or helium--the first pulse to ionize the atoms, the second to generate the harmonics. They detected a phase-matched third harmonic at 351 nm, which was emitted with high efficiency in a tight cone of coherent light. Their theory proposes that the third-harmonic light propagates slightly slower through the gas than the incident light, so with an angle of 6° between them, the two light waves are in phase, and the emission from each electron in the plasma is synchronized. The scientists believe much higher frequencies should be possible in the future. Contact Donald Umstadter at [email protected].

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!