University of Arkansas to study fiber-optic applications for black phosphorous

June 22, 2016
The NSF awarded $466,954 to University of Arkansas physicists to study black phosphorous.

The National Science Foundation awarded $466,954 to University of Arkansas (Fayetteville, AR) physicists to study the ultrathin material black phosphorous for its potential use in fiber-optic communications. Black phosphorous, which can be thinned down to a single layer of atoms, is an ultrathin semiconductor that has the potential to power optoelectronic devices that use both light and electricity. Some current optoelectronic devices are solar cells and light-emitting diodes, better known as LEDs.

RELATED ARTICLE: Black phosphorus could speed optical communication

"Black phosphorous exhibits strong potential for applications from thin-film electronics to infrared optoelectronics," said Hugh Churchill, an assistant professor of physics and the principal investigator on the project.

The research will shed light on the long-term potential for a new kind of optoelectronic device that would feature an optical switch—the kind needed for fiber-optic communication—in which electricity could control light. Such a switch may be smaller, faster and more energy-efficient than current technologies.

Churchill and Salvador Barraza-Lopez, an assistant professor of physics serving as co-principal investigator on the project, will model and observe the behavior of excitons in black phosphorus. When a semiconductor absorbs light, an electron moves up in energy and leaves behind a hole. This electron and hole can bind together, forming an exciton.

In traditional semiconducting materials such as silicon, excitons are formed at extremely low temperatures, just a few degrees above absolute zero, or they disappear almost instantly. They form at much higher temperatures in black phosphorous, Churchill said.

"These excitons are extraordinarily stable even at room temperature," he said. "Their formation and stability in black phosphorous opens the door for not only observing their behavior at higher temperatures, but the possibility of manipulating them before they disappear."

SOURCE: University of Arkansas; http://news.uark.edu/articles/34787/nsf-awards-467-000-to-u-of-a-physicists-for-black-phosphorus-study

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!