No rare elements needed in novel solar-cell semiconductor zinc tin nitride

Oct. 30, 2015
Bandgap is tuned by introducing disorder into the crystal lattice.

A team of researchers from diverse places -- University of Liverpool (Liverpool, England), the University of Buffalo (Buffalo, NY), Binghamton University (Binghamton, NY), University College London (London, England), and Western Michigan University (Kalamazoo, MI) -- has demonstrated a new semiconductor material made from abundant elements which can be tuned for use in solar cells, eliminating the need to use rare elements.1

The semiconductor, zinc tin nitride (ZnSnN2) has a bandgap once thought to be too large for use in photovoltaic cells; however, the researchers found that, by changing the fabrication conditions and thus introducing disorder at the atomic level, the semiconductor's bandgap could be tuned anywhere between 1 and 2 eV -- suitable for use in solar cells.

"Such tunability is typically achieved in other material systems by alloying, or blending in other elements, to obtain the desired result," says Tim Veal, a University of Liverpool researcher. "However, this is not necessary with ZnSnN2, given the recent discovery."

Source: http://news.liv.ac.uk/2015/10/30/scientists-demonstrate-new-semiconductor-material-for-solar-cell-technology/

REFERENCE:

1. Tim D. Veal et al., Advanced Energy Materials (2015); doi: 10.1002/aenm.201501462

Sponsored Recommendations

On demand webinar: Meet BMF’s first hybrid resolution printer, the microArch D1025

July 26, 2024
Join us in this webinar to explore our newest product release - the microArch D1025 - our first dual-resolution printer. Learn more!

Meet the microArch D1025: Hybrid Resolution 3D Printing Technology

July 26, 2024
Meet BMF's newest release, our first dual-resolution printer for the prototyping and production of parts requiring micron-level precision.

Optical Power Meters for Diverse Applications

April 30, 2024
Bench-top single channel to multichannel power meters, Santec has the power measurement platforms to meet your requirements.

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!