Near-IR laser device measures brain oxygen levels

Oct. 24, 2005
Atlanta, GA--A new device that uses near-infrared light to noninvasively monitor the oxygenation of the brain during surgery appears to be a promising alternative to the more invasive techniques currently in use, according to a new study by Duke University Medical Center anesthesiologists.

Atlanta, GA--A new device that uses near-infrared light to noninvasively monitor the oxygenation of the brain during surgery appears to be a promising alternative to the more invasive techniques currently in use, according to a new study by Duke University Medical Center anesthesiologists.

The researchers said their findings offer the potential for accurate and reliable monitoring of brain oxygenation during cardiac surgeries, to more effectively protect the brain against reduced oxygen levels, or anoxia, which is known to cause cognitive impairment in some surgical patients.

During some surgeries anesthesiologists measure venous oxygenation by periodically removing blood samples from catheters inserted in major blood vessels in the neck and then analyze the samples by co-oximetry. Also, anesthesiologists frequently use a pulse oximeter, attached to the patient's finger, to measure arterial blood oxygenation. However, since these measurements are taken on blood outside the brain, physicians can only estimate the level of cerebral oxygenation.

Designed by CAS Medical Systems, the monitor, called a cerebral oximeter, uses one or more sensors attached to the forehead that emit non-harmful, low-level laser light through the skin and skull into the brain. Since the near-infrared light absorption characteristics of the hemoglobin in red blood cells are known, the system can calculate the brain tissue oxygen saturation by measuring the differences in intensity of light as it passes through the brain. When combined with pulse oximetry, the cerebral oximeter may be used to estimate the cerebral venous oxygen saturation.

"It has always been a challenge to directly measure the oxygen levels in the brain," said Duke anesthesiologist David MacLeod, M.D., who presented the results of the Duke study Oct. 22, 2005, at the annual scientific sessions of the American Society of Anesthesiologists in Atlanta. "The main issues with the invasive approach are that it does not provide specific information in real time, and it is of course invasive, which can carry some risk to the patient.

"This new technology, which is non-invasive and provides real-time information, appears to be an accurate means for measuring cerebral oxygenation and indirectly cerebral perfusion," MacLeod said. "As anesthesiologists, protecting the brain from potential harm is one of the main functions we perform during a surgical procedure."

For their study, the researchers enrolled 12 healthy volunteers. The volunteers were monitored using the different blood oxygenation measurement systemspulse oximetry, jugular and radial arterial co-oximetry, and the prototype cerebral oximeter. In a stepwise fashion, the researchers decreased and then increased the concentration of inhaled oxygen through a range of 70 to 100 percent arterial blood oxygen saturation. Frequent, concurrent measurements were made on all three systems throughout the process.

"We made a total of 171 readings and found a strong correlation between the reference co-oximetry measurements by the invasive methods to the non-invasive approaches," MacLeod said. "So it appears that we can use non-invasive approaches to estimate something we could in the past only measure with invasive sampling."

Following this successful validation of the CAS cerebral oximeter, the Duke team is conducting a clinical trial to refine the optimal range of cerebral oxygenation in patients undergoing heart surgery. After surgery these patients will be periodically assessed to detect any correlation between cerebral oxygen levels during surgery and post-op changes in cognition.

The study was funded by a Phase II Small Business Innovative Research grant from the National Institutes of Health awarded to CAS.

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!