Researchers demonstrate storage and retrieval of single photons

Dec. 8, 2005
December 8, 2005, Atlanta, GA--In one of three papers published the December 8 issue of Nature, a group of physicists from the Georgia Institute of Technology led by Professors Alex Kuzmich and Brian Kennedy describe the storage and retrieval of single photons transmitted between remote quantum memories composed of rubidium atoms.

December 8, 2005, Atlanta, GA--In one of three papers published the December 8 issue of Nature, a group of physicists from the Georgia Institute of Technology led by Professors Alex Kuzmich and Brian Kennedy describe the storage and retrieval of single photons transmitted between remote quantum memories composed of rubidium atoms. The work represents a significant step toward quantum communication and computation networks that would store and process information using both photons and atoms. But the researchers caution that even with their rudimentary network operation, practical applications for quantum networking remain a long way off.

"The controlled transfer of single quanta between remote quantum memories is an important step toward distributed quantum networks," said Alex Kuzmich, the Cullen-Peck Assistant Professor in Georgia Tech's School of Physics. "But this is still a building block. It will take a lot of steps and several more years for this to happen in a practical way."

From an applications perspective, the storage and retrieval of a qubit state in an atomic quantum memory node is an important step towards a "quantum repeater." Such a device would be necessary for transmitting quantum information long distances through optical fibers.

Existing telecommunications networks use classical light to transmit information through optical fibers. To carry information long distances, such signals must be periodically boosted by repeater stations that cannot be used for quantum networking.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!