Fused-silica damage threshold established at 1064 nm

May 1, 2008
The optical-damage threshold in bulk fused silica is important for establishing the performance limits of high-power laser systems, but the mechanism is poorly understood.

The optical-damage threshold in bulk fused silica is important for establishing the performance limits of high-power laser systems, but the mechanism is poorly understood. Now, researchers at Sandia National Laboratories (Albuquerque, NM) have established a rate equation governing catastrophic optical damage in fused silica. Sandia researcher Arlee Smith and colleagues measured optical damage thresholds of bulk fused silica at 1064 nm for 8 ns pulses from a single-mode Q-switched laser and 14 ps pulses from a mode-locked Q-switched laser focused to 7.5 mm spots and found damage thresholds of 3854 ± 85 J/cm2 and 25.4 ± 1.0 J/cm2 respectively, corrected for self-focusing.

The observations were described by a simple electron-avalanche model, which stated that the electron-avalanche coefficient, a, must overcome the large free-electron lifetime, t, to reach the threshold, in contrast to commonly published claims that the damage-threshold fluence scales as the square root of the pulse durations (t½) in the picosecond/nanosecond regime. The group reported a bulk-damage-threshold irradiance in fused silica of 475 × 109 W/cm2 ± 7% for linearly or circularly polarized light, at a pulse duration of 7.5 ns and a focal waist of 7.45 mm. Contact Jeff Koplow at [email protected].

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Case Study: Medical Tube Laser Processing

March 28, 2024
To enhance their cardiovascular stent’s precision, optimize throughput and elevate part quality, a renowned manufacturer of medical products embarked on a mission to fabricate...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!