Free-space optical communications system transmits 10.7 Gbit/s

Nov. 1, 2008
Scientists at Discovery Semiconductors (Ewing, NJ), Science Applications International (Albuquerque, NM), the Air Force Research Laboratory (Kirtland AFB, NM), and Schafer (Albuquerque, NM) have created a satellite free-space optical communications system that transmits 10.7 Gbit/s at 1.55 µm wavelength

Scientists at Discovery Semiconductors (Ewing, NJ), Science Applications International (Albuquerque, NM), the Air Force Research Laboratory (Kirtland AFB, NM), and Schafer (Albuquerque, NM) have created a satellite free-space optical communications system that transmits 10.7 Gbit/s at a 1.55 µm wavelength; with a commercial +37 dBm optical-booster amplifier, it would do so over a distance of several tens of thousands of kilometers. The receiver—the key development—is preamplified and has an optical-delay interferometer and a balanced photoreceiver.

The transmitter-receiver pair is based on return-to-zero differential phase-shift keying. The receiver has a sensitivity of 27 photons per bit at 10.7 GHz, less than 1 dB from the quantum limit of 22 photons/bit, resulting in a bit-error rate of 1 × 10-9. The photodetector is integrated with a clock-and-data recovery (CDR) unit to allow bit-error-rate measurements. To simulate Earth-to-satellite links, the system was tested with a “turbulence box,” containing heating elements and fans, which showed that even under heavy scintillation, the CDR locked onto the data stream, and also confirmed that the return-to-zero format was more robust than a non-return-to-zero format. Contact Christoph Wree at [email protected].

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!