Spectral measurements reveal atomic structure in fermium

June 1, 2003
Originally discovered half a century ago in debris of the first hydrogen-bomb explosion, fermium has 18 known isotopes, of which fermium 257, the most stable, has a half-life of only 100 days.

Originally discovered half a century ago in debris of the first hydrogen-bomb explosion, fermium has 18 known isotopes, of which fermium 257, the most stable, has a half-life of only 100 days. It took almost two years for researchers at the Oak Ridge National Laboratory (Oak Ridge, TN) nuclear reactor to create nanogram amounts of fermium 255 with a half-life of 20.1 hours from which 1,718 ng were shipped to the University of Mainz (Mainz, Germany), where resonance ionization spectroscopy with an excimer-dye-laser combination along with mass analysis enabled observation for the first time in fermium of two calculated atomic levels above the ground state.1

A turbo molecular pump (TMP)-driven gas flow, in addition to an electric field, transports the fermium ions into a quadropole mass spectrometer (QMS) for mass analysis and identification by a channeltron detector. LPM is the laser-power meter.
Click here to enlarge image

Working with a sample of only 2.7 × 1010 atoms, the researchers had to initially narrow the search window using relativistic multiconfiguration Dirac-Fock calculations to predict appropriate levels at which to perform their two-step resonance ionization spectroscopy.

A tunable dye laser with an 8-GHz spectral linewidth enabled them to scan across a wavenumber range between 24,703 and 25,990 cm-1 containing two predicted atomic levels, during nonresident ionization with 15-ns, 50-mJ pulses from a 351/353-nm-emitting excimer pump laser operating at a 200-Hz pulse-repetition rate.

Under laser illumination, the fermium atoms could only be stored in the argon buffer gas for about 40 ms; in the course of an eight-hour scan, the researchers illuminated about one million atoms per second. After two-step laser ionization, a combination of an electric field and a gas flow transported the fermium ions into a quadrupole mass spectrometer for mass analysis and identification (see figure). Resonances were observed in the vicinity of two of the predicted energy states at wave numbers of 25,099.8 and 25,111.8 cm-1, but observing the predicted three higher energy states would have required a larger sample of fermium, according to the researchers.

Furthermore, the drift time of the ions through the buffer gas was determined. "In principle, a measurement of the drift time of the ions in the optical cell enables a determination of the ionic mobility and may open up avenues in studies of relativistic effects on ionic radii and the bond lengths of simple molecular ions," they wrote.1

REFERENCE

  1. M. Sewtz et al., Phys. Rev. Lett. 90(16) 163002-1 (April 25, 2003).

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!