Nanocrystals electroluminesce bright white light

March 1, 1995
Quantum confinement effects occurring in nanocrystals can effectively increase the bandga¥in silicon materials from about one electron volt, which corresponds to the infrared range, to several electron volts, which corresponds to the visible or ultraviolet range. Scientists at Structured Materials Industries (Piscataway, NJ) are using these effects to control electron-transport mechanisms and generate bright UV (

Nanocrystals electroluminesce bright white light

Eugene D. Jungbluth

Quantum confinement effects occurring in nanocrystals can effectively increase the bandga¥in silicon materials from about one electron volt, which corresponds to the infrared range, to several electron volts, which corresponds to the visible or ultraviolet range. Scientists at Structured Materials Industries (Piscataway, NJ) are using these effects to control electron-transport mechanisms and generate bright UV (<350-nm), visible white, and IR (greater than 850-nm) light from electrically stimulated silicon.

A silicon-rich silicon dioxide layer nominally 1 µm thick was formed on a silicon substrate by low-pressure chemical-vapor deposition and then annealed to precipitate out excess silicon. This process is used to create a nanocrystal surface with crystal sizes ranging from 1 to 5 nm. Electrical contact is made via probes to deposited indium tin oxide contacts (3-9-mm diameter) from which intense visible white-light emission is evident even in ambient light.

President Gary Tompa said that his company is working on ac-type electroluminescent devices (about 100 V), but dim emission is observed at only 10 V. Tompa said, "We are working on methods to tailor the emission wavelength in a controllable way." He explained that the emission wavelength depends on the crystal size--the emission wavelength shifts to the red as the size increases--but surface chemistry may also have an effect on wavelength. Because silicon is used, the well-known advantages of silicon integrated-circuit (IC) processing technology can be exploited. Tompa envisions various product applications including lamps, displays, and photonic ICs.

Sponsored Recommendations

Case Study – Large OAP Mirrors

Dec. 4, 2023
Customized Large Optics by Avantier: Meeting Unique Needs with Precision and Quality In the ever-evolving world of optical technology, the demand for customized large optics ...

Next-level virus detection via WIDE-MIP microscopy

Dec. 4, 2023
Rapid and accurate detection of a virus can quite literally make the difference between life and death. With this in mind, researchers created a mid-infrared photothermal microscope...

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!