Atomic xenon laser produces high output power

Nov. 1, 1995
An RF-excited atomic xenon laser capable of providing a CW output of 5.5 W has been developed by a research group at Heriot-Watt University (Edinburgh, Scotland). The laser operates in the 2-4-µm region with efficiencies up to 0.8%. Atomic xenon lasers are of interest because their spectral region is useful but difficult to access with other lasers; potential applications include surgery and atmospheric remote sensing. DC-excited xenon lasers are, however, usually characterized as high-gain

Atomic xenon laser produces high output power

An RF-excited atomic xenon laser capable of providing a CW output of 5.5 W has been developed by a research group at Heriot-Watt University (Edinburgh, Scotland). The laser operates in the 2-4-µm region with efficiencies up to 0.8%. Atomic xenon lasers are of interest because their spectral region is useful but difficult to access with other lasers; potential applications include surgery and atmospheric remote sensing. DC-excited xenon lasers are, however, usually characterized as high-gain devices with low saturation, producing only milliwatt output. Although recent experiments with microwave and RF excitation have increased powers up to approximately1 W, the reason for the increase was unclear.

The xenon laser uses RF excitation at 49 MHz into a rectangular discharge slab made of metal and alumina. The length of the slab is 370 mm, the width ranges from 2 to 30 mm, and the thickness (interelectrode gap) ranges from 1 to 1.5 mm. Area scaling occurs as the width is changed, with a linear increase in power as the discharge slab area is increased. The output corresponds to 50 mW/cm2, and the highest power from the configuration is 5.5 W from the full width of 30 mm. The researchers believe that there is scope for making further improvements in the xenon laser.

Sponsored Recommendations

Flexible, Thixotropic, One Component Dual Cure Epoxy

Dec. 1, 2023
Master Bond UV23FLDC-80TK is a moderate viscosity, cationic type system that offers both UV light and heat curing mechanisms. It cures readily within 20-30 seconds when exposed...

MRF Polishing

Dec. 1, 2023
Welcome to Avantier, your esteemed partner in optical solutions for over five decades. With a legacy of expert knowledge, we invite you to delve into the realm of precision optics...

Fluorescence Microscopy Part 1: Illuminating Samples for High-Resolution Imaging

Dec. 1, 2023
Illuminating Samples Fluorescence microscopy is a powerful imaging technique widely used in various fields, especially in biomedical research, to visualize and study fluorescently...

Photonics Business Moves: December 1, 2023

Dec. 1, 2023
Here are the top four photonics business moves that made headlines during the week ending December 1, 2023.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!