Photonic-crystal fiber achieves 10 Gbit/s transmission in the visible

March 1, 2007
Increasing demand for broadband services is encouraging researchers to improve the performance of photonic-crystal (PC) fibers, which offer the potential for communication systems with a bandwidth of 260 THz or more, relying on a large spectral bandwidth.

Increasing demand for broadband services is encouraging researchers to improve the performance of photonic-crystal (PC) fibers, which offer the potential for communication systems with a bandwidth of 260 THz or more, relying on a large spectral bandwidth. Researchers at NTT (Ibaraki, Japan) have moved closer to practical implementation of such fibers by demonstrating successful 10 Gbit/s transmission over a 1 km length of PC fiber using a 780 nm single-mode grating-stabilized laser diode, and 1 Gbit/s transmission using a 783 nm Fabry-Perot laser diode.

The 125 µm outer-diameter, 11 µm core-diameter PC fiber contained 60 air holes with a hole-diameter to hole-pitch ratio of 0.5. For the 783 nm transmission over a 1 km length of fiber, optical loss was 4.9 dB/km, chromatic dispersion was -107 ps/nm-km, and a bit-error rate (BER) of 10-9 was observed with a received power level of -30 dBm. With the use of the grating-stabilized 780 nm source, the BER improved to 10-11, realizing the first penalty-free 10 Gbit/s visible transmission for a PC fiber. Contact Kenji Kurokawa at [email protected].

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Filter accessories including cubes, sliders, and rings, designed to enhance the performance and versatility of optical systems. These components ensure precise alignment and stability...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!