Optofluidic system for laser tweezers has no pesky cover slip

Aug. 1, 2010
A new version of a type of optofluidic system designed to be used with laser "tweezers" for 3D manipulation of biological cells under a microscope has been created by researchers at Technische Universitvät Ilmenau (Ilmenau, Germany).

A new version of a type of optofluidic system designed to be used with laser "tweezers" for 3D manipulation of biological cells under a microscope has been created by researchers at Technische Universitvät Ilmenau (Ilmenau, Germany). While the old version requires a 0.17 mm thick glass cover slip between the optofluidic system and the microscope, the new version does not. The new geometry has an important advantage: direct access to the optofluidic system, which allows other analytical tools such as electrodes to be added at any time.

Pre-existing systems of this sort consist of a replicated polydimethylsiloxane (PDMS) fluid-channel system mounted to a standard cover slip; the slip is necessary, as the PDMS channel surfaces, which are created with a silicon or photoresist mold, are not of optical quality. In contrast, the new version is replicated using a polymethylmethacrylate (PMMA) master mold of optical quality, allowing the cover (through which the specimen cells are viewed) to be part of the PDMS channel structure. The PMMA mold is created through micromilling, a precision process that uses a diamond tool with a diameter of 1 mm that rotates at a speed of 55,000 rpm. Optical trapping and viewing of 3 µm polystyrene particles was successfully performed. Contact Stefan Sinzinger at[email protected].

More Laser Focus World Current Issue Articles
More Laser Focus World Archives Issue Articles

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a Micro 3D Printed Benchmark Part: Send us your file.

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!