3D Microscopy: Single-objective SPIM simplifies super-resolution 3D cell imaging

Sept. 16, 2015
A simplified super-resolution microscopy method can identify single proteins anywhere within a cell, and allows assessment of cellular organization in 3D.

A simplified super-resolution microscopy method can identify single proteins anywhere within a cell, and allows assessment of cellular organization in 3D.1

Recent advances have enabled super-resolution imaging of biological samples in 3D for extended periods without damaging the sample. This means that the activity of single proteins can be followed within individual cells, providing new insight into protein function and, importantly, how protein dysregulation can lead to disease. Unfortunately, these techniques are complicated and expensive, and most of those that enable single-molecule imaging capture images only within the first micrometer of the coverslip-whereas a typical human skin cell is 30 μm thick.

And while selective plane illumination microscopy (SPIM) enables 3D super-resolution imaging of thicker samples at a single-cell level, it requires a two-objective system and sample holder that is incompatible with standard microscopes. But an updated approach, called single-objective SPIM (soSPIM), requires just one objective. Developed by associate professor Virgile Viasnoff of the Mechanobiology Institute (MBI) at the National University of Singapore, soSPIM uses an array of micromirrored wells: Each mirror is inclined at precisely 45°, and serves as both a means to direct the excitation beam and to hold the sample. Together with a beam-steering add-on unit, these micromirrors enable the excitation beam and the fluorescence signal to pass through a single standard objective lens.

Compatible with standard inverted microscopes and high-numerical-aperture immersion objective lenses, soSPIM has exhibited fast response, good sectioning capability for 3D imaging of whole cells up to 30 μm above the coverslip, and the ability to identify single proteins deep within cells.

1. R. Galland et al., Nat. Methods, 12, 641-644 (2015); doi:10.1038/nmeth.3402.

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Motion Scan and Data Collection Methods for Electro-Optic System Testing

April 10, 2024
Learn how different scanning patterns and approaches can be used in measuring an electro-optic sensor performance, by reading our whitepaper here!

How Precision Motion Systems are Shaping the Future of Semiconductor Manufacturing

March 28, 2024
This article highlights the pivotal role precision motion systems play in supporting the latest semiconductor manufacturing trends.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!