Putting solar cells in reverse highlights their defects

March 1, 2009
Researchers at the University of Leipzig (Leipzig, Germany) and Q-Cells (Bitterfeld-Wolfen, Germany) have come up with a new way to test multicrystalline solar cells to optoelectronically find their defective areas with unprecedented resolution.

Researchers at the University of Leipzig (Leipzig, Germany) and Q-Cells (Bitterfeld-Wolfen, Germany) have come up with a new way to test multicrystalline solar cells to optoelectronically find their defective areas with unprecedented resolution. The method highlights defects particularly on the cell’s grain boundaries. One previously known way to test solar cells is to feed an external electrical current into the cell in the direction of the cell’s forward bias; the current causes the cell to produce IR light in the same way as an LED. Defective areas immediately show up as dark regions; these are the same regions that would not efficiently collect solar energy. However, this test is not very spatially accurate.

Click here to enlarge image

Instead, Dominik Lausch of the University of Leipzig fed current into solar cells in the opposite direction (the reverse-bias direction), getting a very different result. In this case, only the defects themselves emitted light, and did so very brightly indeed at the boundaries of the cell’s multicrystalline grains. This test is an important one, because when part of a solar cell is subjected to a shadow in operation (due to a falling leaf, for example), that portion of the cell switches from forward to reverse bias; localized defects in the cell can then cause a strong current to flow that could wreck the cell. Contact [email protected].

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!